These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16398927)

  • 1. Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis.
    Jonsson PF; Cavanna T; Zicha D; Bates PA
    BMC Bioinformatics; 2006 Jan; 7():2. PubMed ID: 16398927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network motif-based identification of breast cancer susceptibility genes.
    Zhang Y; Xuan J; de Los Reyes BG; Clarke R; Ressom HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5696-9. PubMed ID: 19164010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
    Statnikov A; Aliferis CF; Tsamardinos I; Hardin D; Levy S
    Bioinformatics; 2005 Mar; 21(5):631-43. PubMed ID: 15374862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple decision rules for classifying human cancers from gene expression profiles.
    Tan AC; Naiman DQ; Xu L; Winslow RL; Geman D
    Bioinformatics; 2005 Oct; 21(20):3896-904. PubMed ID: 16105897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularization strategies for hyperplane classifiers: application to cancer classification with gene expression data.
    Andries E; Hagstrom T; Atlas SR; Willman C
    J Bioinform Comput Biol; 2007 Feb; 5(1):79-104. PubMed ID: 17477492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering.
    Pal NR; Aguan K; Sharma A; Amari S
    BMC Bioinformatics; 2007 Jan; 8():5. PubMed ID: 17207284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data.
    Xu L; Tan AC; Naiman DQ; Geman D; Winslow RL
    Bioinformatics; 2005 Oct; 21(20):3905-11. PubMed ID: 16131522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothing blemished gene expression microarray data via missing value imputation.
    Cai Z; Shi Y; Song M; Goebel R; Lin G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5688-91. PubMed ID: 19164008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic model of the human protein-protein interaction network.
    Rhodes DR; Tomlins SA; Varambally S; Mahavisno V; Barrette T; Kalyana-Sundaram S; Ghosh D; Pandey A; Chinnaiyan AM
    Nat Biotechnol; 2005 Aug; 23(8):951-9. PubMed ID: 16082366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response projected clustering for direct association with physiological and clinical response data.
    Yi SG; Park T; Lee JK
    BMC Bioinformatics; 2008 Jan; 9():76. PubMed ID: 18237428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering gene expression data with kernel principal components.
    Liu Z; Chen D; Bensmail H; Xu Y
    J Bioinform Comput Biol; 2005 Apr; 3(2):303-16. PubMed ID: 15852507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer molecular pattern discovery by subspace consensus kernel classification.
    Han X
    Comput Syst Bioinformatics Conf; 2007; 6():55-65. PubMed ID: 17951812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential latent knowledge for protein-protein interactions: analysis by an unsupervised learning approach.
    Mamitsuka H
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):119-30. PubMed ID: 17044177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative interactomics analysis of protein family interaction networks using PSIMAP (protein structural interactome map).
    Park D; Lee S; Bolser D; Schroeder M; Lappe M; Oh D; Bhak J
    Bioinformatics; 2005 Aug; 21(15):3234-40. PubMed ID: 15914543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of a fifteen gene prognostic panel for six cancers.
    Khirade MF; Lal G; Bapat SA
    Sci Rep; 2015 Aug; 5():13248. PubMed ID: 26272668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease.
    Motsinger AA; Lee SL; Mellick G; Ritchie MD
    BMC Bioinformatics; 2006 Jan; 7():39. PubMed ID: 16436204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective gene selection method with small sample sets using gradient-based and point injection techniques.
    Huang D; Chow T
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):467-475. PubMed ID: 17666766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of lung cancer pathways using reverse phase protein microarray and prior-knowledge based Bayesian networks.
    Kim DC; Yang CR; Wang X; Zhang B; Wu X; Gao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5543-6. PubMed ID: 22255594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data.
    Zhao X; Cheung LW
    BMC Bioinformatics; 2007 Feb; 8():67. PubMed ID: 17328811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive diffusion kernel learning from biological networks for protein function prediction.
    Sun L; Ji S; Ye J
    BMC Bioinformatics; 2008 Mar; 9():162. PubMed ID: 18366736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.