BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16399002)

  • 21. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea.
    Singh K; Kumar S; Rani A; Gulati A; Ahuja PS
    Funct Integr Genomics; 2009 Feb; 9(1):125-34. PubMed ID: 18679731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acibenzolar-S-methyl activates calcium signalling to mediate lignin synthesis in the exocarp of Docteur Jules Guyot pears.
    Guo M; Hou J; Li C; Qu L; Huang R; Liu J; Ge Y
    Plant Physiol Biochem; 2022 Nov; 190():174-183. PubMed ID: 36116226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae.
    Jiang H; Wood KV; Morgan JA
    Appl Environ Microbiol; 2005 Jun; 71(6):2962-9. PubMed ID: 15932991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis.
    Achnine L; Blancaflor EB; Rasmussen S; Dixon RA
    Plant Cell; 2004 Nov; 16(11):3098-109. PubMed ID: 15472080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Ca
    Ma Y; Wang P; Zhou T; Chen Z; Gu Z; Yang R
    J Sci Food Agric; 2019 Aug; 99(11):5176-5186. PubMed ID: 31021402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin.
    Zhang Z; Wang T; Liu G; Hu M; Yun Z; Duan X; Cai K; Jiang G
    Food Chem; 2021 Jun; 347():129009. PubMed ID: 33444889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas.
    Park JH; Park NI; Xu H; Park SU
    J Nat Prod; 2010 Aug; 73(8):1394-7. PubMed ID: 20701298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.
    Hoang VL; Innes DJ; Shaw PN; Monteith GR; Gidley MJ; Dietzgen RG
    BMC Genomics; 2015 Jul; 16(1):561. PubMed ID: 26220670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development.
    Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST
    Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway.
    Ro DK; Douglas CJ
    J Biol Chem; 2004 Jan; 279(4):2600-7. PubMed ID: 14607837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunolocalization of phenylalanine ammonia-lyase and cinnamate-4-hydroxylase in differentiating xylem of poplar.
    Sato T; Takabe K; Fujita M
    C R Biol; 2004; 327(9-10):827-36. PubMed ID: 15587074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster.
    Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S
    Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of flavanols and expression of leucoanthocyanidin reductase induced by postharvest UV-C irradiation in grape berry.
    Wen PF; Ji W; Gao MY; Niu TQ; Xing YF; Niu XY
    Genet Mol Res; 2015 Jul; 14(3):7687-95. PubMed ID: 26214449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Foliar-sprayed manganese sulfate improves flavonoid content in grape berry skin of Cabernet Sauvignon (Vitis vinifera L.) growing on alkaline soil and wine chromatic characteristics.
    Chen H; Yang J; Deng X; Lei Y; Xie S; Guo S; Ren R; Li J; Zhang Z; Xu T
    Food Chem; 2020 Jun; 314():126182. PubMed ID: 31968293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of phenolic compounds during loquat fruit development.
    Ding CK; Chachin K; Ueda Y; Imahori Y; Wang CY
    J Agric Food Chem; 2001 Jun; 49(6):2883-8. PubMed ID: 11409982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase.
    Wohl J; Petersen M
    Plant Cell Rep; 2020 Sep; 39(9):1129-1141. PubMed ID: 32405654
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Chen O; Deng L; Ruan C; Yi L; Zeng K
    J Agric Food Chem; 2021 Mar; 69(8):2619-2631. PubMed ID: 33594880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic and transcriptional regulation of phenolic conversion and tocopherol biosynthesis during germination of sesame (
    Li X; Dong S; Bai W; Jia J; Gu R; Zhao C; Liu X; Wang Y
    Food Funct; 2020 Nov; 11(11):9848-9857. PubMed ID: 33090159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium- and hormone-driven regulation of secondary metabolism and cell wall enzymes in grape berry cells.
    Martins V; Garcia A; Costa C; Sottomayor M; Gerós H
    J Plant Physiol; 2018 Dec; 231():57-67. PubMed ID: 30218930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots.
    Cheniany M; Ganjeali A
    Acta Biol Hung; 2016 Dec; 67(4):379-392. PubMed ID: 28000512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.