BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16399033)

  • 1. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.
    Chen W; Giger ML; Bick U
    Acad Radiol; 2006 Jan; 13(1):63-72. PubMed ID: 16399033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated breast segmentation of fat and water MR images using dynamic programming.
    Rosado-Toro JA; Barr T; Galons JP; Marron MT; Stopeck A; Thomson C; Thompson P; Carroll D; Wolf E; Altbach MI; Rodríguez JJ
    Acad Radiol; 2015 Feb; 22(2):139-48. PubMed ID: 25572926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.
    Lin M; Chan S; Chen JH; Chang D; Nie K; Chen ST; Lin CJ; Shih TC; Nalcioglu O; Su MY
    Med Phys; 2011 Jan; 38(1):5-14. PubMed ID: 21361169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation and classification of breast tumor using dynamic contrast-enhanced MR images.
    Zheng Y; Baloch S; Englander S; Schnall MD; Shen D
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):393-401. PubMed ID: 18044593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the contrast of the brain MR FLAIR images using fuzzy membership functions and structural similarity indices in order to segment MS lesions.
    Bijar A; Khayati R; Peñalver Benavent A
    PLoS One; 2013; 8(6):e65469. PubMed ID: 23799015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U-Net breast lesion segmentations for breast dynamic contrast-enhanced magnetic resonance imaging.
    Douglas L; Bhattacharjee R; Fuhrman J; Drukker K; Hu Q; Edwards A; Sheth D; Giger M
    J Med Imaging (Bellingham); 2023 Nov; 10(6):064502. PubMed ID: 37990686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-segmentation of retinal image lesions in diabetic retinopathy using energy-based fuzzy C-Means clustering (EFM-FCM).
    Naz H; Nijhawan R; Ahuja NJ; Saba T; Alamri FS; Rehman A
    Microsc Res Tech; 2024 Jan; 87(1):78-94. PubMed ID: 37681440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computerized volumetric segmentation method applicable to multi-centre MRI data to support computer-aided breast tissue analysis, density assessment and lesion localization.
    Ertas G; Doran SJ; Leach MO
    Med Biol Eng Comput; 2017 Jan; 55(1):57-68. PubMed ID: 27106750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of Multiple Sclerosis Disease in Brain Magnetic Resonance Imaging Based on the Harris Hawks Optimization Algorithm.
    Iswisi AFA; Karan O; Rahebi J
    Biomed Res Int; 2021; 2021():3248834. PubMed ID: 34988224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast MRI segmentation for density estimation: Do different methods give the same results and how much do differences matter?
    Doran SJ; Hipwell JH; Denholm R; Eiben B; Busana M; Hawkes DJ; Leach MO; Silva IDS
    Med Phys; 2017 Sep; 44(9):4573-4592. PubMed ID: 28477346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation of meningioma from contrast-enhanced T1-weighted MRI images in a case series using a marker-controlled watershed segmentation and fuzzy C-means clustering machine learning algorithm.
    Mohammadi S; Ghaderi S; Ghaderi K; Mohammadi M; Pourasl MH
    Int J Surg Case Rep; 2023 Oct; 111():108818. PubMed ID: 37716060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering.
    Rundo L; Beer L; Ursprung S; Martin-Gonzalez P; Markowetz F; Brenton JD; Crispin-Ortuzar M; Sala E; Woitek R
    Comput Biol Med; 2020 May; 120():103751. PubMed ID: 32421652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided segmentation system for breast MRI tumour using modified automatic seeded region growing (BMRI-MASRG).
    Al-Faris AQ; Ngah UK; Isa NA; Shuaib IL
    J Digit Imaging; 2014 Feb; 27(1):133-44. PubMed ID: 24100762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.
    Hatt M; Cheze le Rest C; Turzo A; Roux C; Visvikis D
    IEEE Trans Med Imaging; 2009 Jun; 28(6):881-93. PubMed ID: 19150782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs.
    Pandey D; Yin X; Wang H; Su MY; Chen JH; Wu J; Zhang Y
    Heliyon; 2018 Dec; 4(12):e01042. PubMed ID: 30582055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computerized assessment of background parenchymal enhancement on breast dynamic contrast-enhanced-MRI including electronic lesion removal.
    Douglas L; Fuhrman J; Hu Q; Edwards A; Sheth D; Abe H; Giger M
    J Med Imaging (Bellingham); 2024 May; 11(3):034501. PubMed ID: 38737493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis.
    Zheng Y; Englander S; Baloch S; Zacharaki EI; Fan Y; Schnall MD; Shen D
    Med Phys; 2009 Jul; 36(7):3192-204. PubMed ID: 19673218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Intuitionistic Fuzzy Clustering Approach for Detection of Abnormal Regions in Mammogram Images.
    Chaira T
    J Digit Imaging; 2021 Apr; 34(2):428-439. PubMed ID: 33755865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised Segmentation of 5D Hyperpolarized Carbon-13 MRI Data Using a Fuzzy Markov Random Field Model.
    Daniels CJ; Gallagher FA
    IEEE Trans Med Imaging; 2018 Apr; 37(4):840-850. PubMed ID: 28880161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Region Location and Classification Based on Fuzzy Logic and Region Merging Image Segmentation Algorithm.
    Zhao T; Dai H
    J Healthc Eng; 2021; 2021():1141619. PubMed ID: 34721822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.