These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1639928)

  • 1. Adsorption behavior of milk proteins on polystyrene latex. A study based on sedimentation field-flow fractionation and dynamic light scattering.
    Caldwell KD; Li J; Li JT; Dalglesih DG
    J Chromatogr; 1992 Jun; 604(1):63-71. PubMed ID: 1639928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of caseins on thermal stability of bovine beta-lactoglobulin.
    Yong YH; Foegeding EA
    J Agric Food Chem; 2008 Nov; 56(21):10352-8. PubMed ID: 18828604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging flocculation of polystyrene latex by beta-lactoglobulin: photon correlation spectroscopy studies.
    Price JC; Griffin WG; Griffin MC
    Biochem Soc Trans; 1991 Apr; 19(2):508-10. PubMed ID: 1889669
    [No Abstract]   [Full Text] [Related]  

  • 4. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.
    Makan AC; Spallek MJ; du Toit M; Klein T; Pasch H
    J Chromatogr A; 2016 Apr; 1442():94-106. PubMed ID: 26987415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2006 May; 297(1):170-81. PubMed ID: 16289188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of different amphiphilic molecules onto polystyrene latices.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2005 Feb; 282(2):439-47. PubMed ID: 15589551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.
    Rah K; Han S; Choi J; Eum CH; Lee S
    J Chromatogr A; 2017 Dec; 1528():75-82. PubMed ID: 29126589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in polystyrene particle surface charge upon adsorption of the Pluronic F108 surfactant.
    Ter Veen R; Fromell K; Caldwell KD
    J Colloid Interface Sci; 2005 Aug; 288(1):124-8. PubMed ID: 15927570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding between proteins and cationic spherical polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry.
    Wang S; Chen K; Li L; Guo X
    Biomacromolecules; 2013 Mar; 14(3):818-27. PubMed ID: 23402270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the carrier composition on thermal field-flow fractionation for the characterisation of sub-micron polystyrene latex particles.
    Mes EP; Tijssen R; Kok WT
    J Chromatogr A; 2001 Jan; 907(1-2):201-9. PubMed ID: 11217026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyampholyte gelatin adsorption to colloidal latex: pH and electrolyte effects on acrylic and polystyrene latices.
    Vaynberg KA; Wagner NJ; Sharma R
    Biomacromolecules; 2000; 1(3):466-72. PubMed ID: 11710138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding of beta-lactoglobulin on the surface of polystyrene nanoparticles: experimental and computational approaches.
    Miriani M; Eberini I; Iametti S; Ferranti P; Sensi C; Bonomi F
    Proteins; 2014 Jul; 82(7):1272-82. PubMed ID: 24338946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces.
    Waninge R; Walstra P; Bastiaans J; Nieuwenhuijse H; Nylander T; Paulsson M; Bergenståhl B
    J Agric Food Chem; 2005 Feb; 53(3):716-24. PubMed ID: 15686425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.
    Lajnaf R; Picart-Palmade L; Attia H; Marchesseau S; Ayadi MA
    Colloids Surf B Biointerfaces; 2017 Mar; 151():287-294. PubMed ID: 28038415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface forces in model oil-in-water emulsions stabilized by proteins.
    Dimitrova TD; Leal-Calderon F; Gurkov TD; Campbell B
    Adv Colloid Interface Sci; 2004 May; 108-109():73-86. PubMed ID: 15072930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry.
    Henzler K; Haupt B; Lauterbach K; Wittemann A; Borisov O; Ballauff M
    J Am Chem Soc; 2010 Mar; 132(9):3159-63. PubMed ID: 20143809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.