BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16399353)

  • 1. A comparative molecular field analysis-based approach to prediction of sulfotransferase catalytic specificity.
    Sharma V; Duffel MW
    Methods Enzymol; 2005; 400():249-63. PubMed ID: 16399353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative molecular field analysis of substrates for an aryl sulfotransferase based on catalytic mechanism and protein homology modeling.
    Sharma V; Duffel MW
    J Med Chem; 2002 Dec; 45(25):5514-22. PubMed ID: 12459019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis.
    Tibbs ZE; Rohn-Glowacki KJ; Crittenden F; Guidry AL; Falany CN
    Drug Metab Pharmacokinet; 2015 Feb; 30(1):3-20. PubMed ID: 25760527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of human sulfotransferases: insights into the mechanisms of action and substrate selectivity.
    Dong D; Ako R; Wu B
    Expert Opin Drug Metab Toxicol; 2012 Jun; 8(6):635-46. PubMed ID: 22512672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CoMFA modeling of enzyme kinetics: K(m) values for sulfation of diverse phenolic substrates by human catecholamine sulfotransferase SULT1A3.
    Sipilä J; Hood AM; Coughtrie MW; Taskinen J
    J Chem Inf Comput Sci; 2003; 43(5):1563-9. PubMed ID: 14502490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human sulfotransferases and their role in chemical metabolism.
    Gamage N; Barnett A; Hempel N; Duggleby RG; Windmill KF; Martin JL; McManus ME
    Toxicol Sci; 2006 Mar; 90(1):5-22. PubMed ID: 16322073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Regioselectivity of Cytosolic Sulfotransferase Metabolism for Drugs.
    Öeren M; Kaempf SC; Ponting DJ; Hunt PA; Segall MD
    J Chem Inf Model; 2023 Jun; 63(11):3340-3349. PubMed ID: 37229540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics.
    Kurogi K; Liu TA; Sakakibara Y; Suiko M; Liu MC
    Drug Metab Rev; 2013 Nov; 45(4):431-40. PubMed ID: 24028174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1.
    Wang T; Cook I; Falany CN; Leyh TS
    J Biol Chem; 2014 Sep; 289(38):26474-26480. PubMed ID: 25056952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico mechanistic profiling to probe small molecule binding to sulfotransferases.
    Martiny VY; Carbonell P; Lagorce D; Villoutreix BO; Moroy G; Miteva MA
    PLoS One; 2013; 8(9):e73587. PubMed ID: 24039991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of sulfotransferase pharmacogenetics in altered xenobiotic metabolism.
    Chen BH; Wang CC; Hou YH; Mao YC; Yang YS
    Expert Opin Drug Metab Toxicol; 2015 Jul; 11(7):1053-71. PubMed ID: 26073579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfation through the looking glass--recent advances in sulfotransferase research for the curious.
    Coughtrie MW
    Pharmacogenomics J; 2002; 2(5):297-308. PubMed ID: 12439736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation.
    Suiko M; Kurogi K; Hashiguchi T; Sakakibara Y; Liu MC
    Biosci Biotechnol Biochem; 2017 Jan; 81(1):63-72. PubMed ID: 27649811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function and polymorphism of human cytosolic sulfotransferases.
    Lindsay J; Wang LL; Li Y; Zhou SF
    Curr Drug Metab; 2008 Feb; 9(2):99-105. PubMed ID: 18288952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insights into the specificity of human cytosolic sulfotransferase 2A1 (hSULT2A1) for hydroxylated polychlorinated biphenyls through the use of fluoro-tagged probes.
    Ekuase EJ; van 't Erve TJ; Rahaman A; Robertson LW; Duffel MW; Luthe G
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2119-27. PubMed ID: 26165989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1.
    Sun Y; Machalz D; Wolber G; Parr MK; Bureik M
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33171978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models.
    Taskinen J; Ethell BT; Pihlavisto P; Hood AM; Burchell B; Coughtrie MW
    Drug Metab Dispos; 2003 Sep; 31(9):1187-97. PubMed ID: 12920175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Kinetics of PAPS-Sulfotransferase.
    James MO
    Methods Mol Biol; 2021; 2342():285-300. PubMed ID: 34272699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of substrate structure on the catalytic efficiency of hydroxysteroid sulfotransferase STa in the sulfation of alcohols.
    Chen G; Banoglu E; Duffel MW
    Chem Res Toxicol; 1996; 9(1):67-74. PubMed ID: 8924618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase.
    Teramoto T; Sakakibara Y; Inada K; Kurogi K; Liu MC; Suiko M; Kimura M; Kakuta Y
    FEBS Lett; 2008 Nov; 582(28):3909-14. PubMed ID: 18977225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.