These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16399669)

  • 21. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P.
    Hou L; Tang H; Chen Y; Wang L; Zhou X; Rong W; Wang J
    Brain Res; 2009 Aug; 1284():31-40. PubMed ID: 19500558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic activation of cardiac vagal neurons by capsaicin sensitive and insensitive sensory neurons.
    Evans C; Baxi S; Neff R; Venkatesan P; Mendelowitz D
    Brain Res; 2003 Jul; 979(1-2):210-5. PubMed ID: 12850588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate.
    Woerman AL; Mendelowitz D
    Cardiovasc Res; 2013 Jul; 99(1):16-23. PubMed ID: 23504550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia.
    Griffioen KJ; Kamendi HW; Gorini CJ; Bouairi E; Mendelowitz D
    J Neurophysiol; 2007 Mar; 97(3):2059-66. PubMed ID: 17093115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ketamine inhibits inspiratory-evoked gamma-aminobutyric acid and glycine neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Wang X; Huang ZG; Dergacheva O; Bouairi E; Gorini C; Stephens C; Andresen MC; Mendelowitz D
    Anesthesiology; 2005 Aug; 103(2):353-9. PubMed ID: 16052118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple types of GABAA receptors mediate inhibition in brain stem parasympathetic cardiac neurons in the nucleus ambiguus.
    Bouairi E; Kamendi H; Wang X; Gorini C; Mendelowitz D
    J Neurophysiol; 2006 Dec; 96(6):3266-72. PubMed ID: 16914614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Griffioen KJ; Venkatesan P; Huang ZG; Wang X; Bouairi E; Evans C; Gold A; Mendelowitz D
    Brain Res; 2004 May; 1007(1-2):109-15. PubMed ID: 15064141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus.
    Kamendi H; Dergacheva O; Wang X; Huang ZG; Bouairi E; Gorini C; Mendelowitz D
    Hypertension; 2006 Dec; 48(6):1137-42. PubMed ID: 17015774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propofol modulates gamma-aminobutyric acid-mediated inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Wang X; Huang ZG; Gold A; Bouairi E; Evans C; Andresen MC; Mendelowitz D
    Anesthesiology; 2004 May; 100(5):1198-205. PubMed ID: 15114218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function.
    Wang X; Dergacheva O; Kamendi H; Gorini C; Mendelowitz D
    Hypertension; 2007 Aug; 50(2):368-76. PubMed ID: 17576856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of developmental nicotine exposure on glutamatergic neurotransmission in rhythmically active hypoglossal motoneurons.
    Cholanian M; Powell GL; Levine RB; Fregosi RF
    Exp Neurol; 2017 Jan; 287(Pt 2):254-260. PubMed ID: 27477858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental changes in GABAergic neurotransmission to presympathetic and cardiac parasympathetic neurons in the brainstem.
    Dergacheva O; Boychuk CR; Mendelowitz D
    J Neurophysiol; 2013 Aug; 110(3):672-9. PubMed ID: 23657280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Bateman RJ; Boychuk CR; Philbin KE; Mendelowitz D
    Neuroscience; 2012 May; 210():58-66. PubMed ID: 22425752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Alteration of Neonatal Raphe Neurons by Prenatal-Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome.
    Cerpa VJ; Aylwin Mde L; Beltrán-Castillo S; Bravo EU; Llona IR; Richerson GB; Eugenín JL
    Am J Respir Cell Mol Biol; 2015 Oct; 53(4):489-99. PubMed ID: 25695895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orexinergic modulation of GABAergic neurotransmission to cardiac vagal neurons in the brain stem nucleus ambiguus changes during development.
    Dergacheva O; Bateman R; Byrne P; Mendelowitz D
    Neuroscience; 2012 May; 209():12-20. PubMed ID: 22390944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons.
    Neff RA; Humphrey J; Mihalevich M; Mendelowitz D
    Circ Res; 1998 Dec 14-28; 83(12):1241-7. PubMed ID: 9851941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action of kappa and Delta opioid agonists on premotor cardiac vagal neurons in the nucleus ambiguus.
    Wang X; Dergacheva O; Griffioen KJ; Huang ZG; Evans C; Gold A; Bouairi E; Mendelowitz D
    Neuroscience; 2004; 129(1):235-41. PubMed ID: 15489045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. α1-adrenergic receptors facilitate inhibitory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.
    Boychuk CR; Bateman RJ; Philbin KE; Mendelowitz D
    Neuroscience; 2011 Oct; 193():154-61. PubMed ID: 21771639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of 5-HT3 and other excitatory receptors in central cardiorespiratory responses to hypoxia: implications for sudden infant death syndrome.
    Dergacheva O; Kamendi H; Wang X; Pinol RM; Frank J; Jameson H; Gorini C; Mendelowitz D
    Pediatr Res; 2009 Jun; 65(6):625-30. PubMed ID: 19247214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.