BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16399841)

  • 1. Calcium instabilities in mammalian cardiomyocyte networks.
    Bien H; Yin L; Entcheva E
    Biophys J; 2006 Apr; 90(7):2628-40. PubMed ID: 16399841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study.
    Qu Z; Shiferaw Y; Weiss JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011927. PubMed ID: 17358204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irregular rhythm adversely influences calcium handling in ventricular myocardium: implications for the interaction between heart failure and atrial fibrillation.
    Ling LH; Khammy O; Byrne M; Amirahmadi F; Foster A; Li G; Zhang L; dos Remedios C; Chen C; Kaye DM
    Circ Heart Fail; 2012 Nov; 5(6):786-93. PubMed ID: 23014130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation.
    Wang L; Myles RC; De Jesus NM; Ohlendorf AK; Bers DM; Ripplinger CM
    Circ Res; 2014 Apr; 114(9):1410-21. PubMed ID: 24568740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks.
    Yin L; Bien H; Entcheva E
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H1276-85. PubMed ID: 15105172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic coupled map model of subcellular calcium cycling in cardiac cells.
    Romero L; Alvarez-Lacalle E; Shiferaw Y
    Chaos; 2019 Feb; 29(2):023125. PubMed ID: 30823735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of intracellular calcium cycling in ventricular myocytes.
    Shiferaw Y; Watanabe MA; Garfinkel A; Weiss JN; Karma A
    Biophys J; 2003 Dec; 85(6):3666-86. PubMed ID: 14645059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of abnormal sarcoplasmic reticulum calcium release in canine left-ventricular myocytes results in cellular alternans.
    Armoundas AA
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):220-8. PubMed ID: 19272939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart.
    Aistrup GL; Shiferaw Y; Kapur S; Kadish AH; Wasserstrom JA
    Circ Res; 2009 Mar; 104(5):639-49. PubMed ID: 19150887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis.
    Kim YH; Garfinkel A; Ikeda T; Wu TJ; Athill CA; Weiss JN; Karagueuzian HS; Chen PS
    J Clin Invest; 1997 Nov; 100(10):2486-500. PubMed ID: 9366563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially discordant alternans in cardiomyocyte monolayers.
    de Diego C; Pai RK; Dave AS; Lynch A; Thu M; Chen F; Xie LH; Weiss JN; Valderrábano M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1417-25. PubMed ID: 18223190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.
    Greenstein JL; Hinch R; Winslow RL
    Biophys J; 2006 Jan; 90(1):77-91. PubMed ID: 16214852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal intracellular calcium dynamics during cardiac alternans.
    Restrepo JG; Karma A
    Chaos; 2009 Sep; 19(3):037115. PubMed ID: 19792040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling.
    Goldhaber JI; Xie LH; Duong T; Motter C; Khuu K; Weiss JN
    Circ Res; 2005 Mar; 96(4):459-66. PubMed ID: 15662034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.
    Nivala M; Song Z; Weiss JN; Qu Z
    J Mol Cell Cardiol; 2015 Feb; 79():32-41. PubMed ID: 25450613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics.
    Sato D; Dixon RE; Santana LF; Navedo MF
    PLoS Comput Biol; 2018 Jan; 14(1):e1005906. PubMed ID: 29338006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.
    Tomek J; Rodriguez B; Bub G; Heijman J
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H338-H353. PubMed ID: 28550171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes.
    Brette F; Sallé L; Orchard CH
    Biophys J; 2006 Jan; 90(1):381-9. PubMed ID: 16214862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load.
    Nivala M; Qu Z
    Am J Physiol Heart Circ Physiol; 2012 Aug; 303(3):H341-52. PubMed ID: 22661509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.