BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16400042)

  • 1. Is it time to reevaluate methyl balance in humans?
    Stead LM; Brosnan JT; Brosnan ME; Vance DE; Jacobs RL
    Am J Clin Nutr; 2006 Jan; 83(1):5-10. PubMed ID: 16400042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl balance and transmethylation fluxes in humans.
    Mudd SH; Brosnan JT; Brosnan ME; Jacobs RL; Stabler SP; Allen RH; Vance DE; Wagner C
    Am J Clin Nutr; 2007 Jan; 85(1):19-25. PubMed ID: 17209172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.
    Robinson JL; McBreairty LE; Randell EW; Brunton JA; Bertolo RF
    J Nutr Biochem; 2016 Sep; 35():81-86. PubMed ID: 27469995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat and human mammary tissue can synthesize choline moiety via the methylation of phosphatidylethanolamine.
    Yang EK; Blusztajn JK; Pomfret EA; Zeisel SH
    Biochem J; 1988 Dec; 256(3):821-8. PubMed ID: 3223955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dissection of the S-adenosylmethionine-binding site of phosphatidylethanolamine N-methyltransferase.
    Shields DJ; Altarejos JY; Wang X; Agellon LB; Vance DE
    J Biol Chem; 2003 Sep; 278(37):35826-36. PubMed ID: 12842883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.
    Jacobs RL; Zhao Y; Koonen DP; Sletten T; Su B; Lingrell S; Cao G; Peake DA; Kuo MS; Proctor SD; Kennedy BP; Dyck JR; Vance DE
    J Biol Chem; 2010 Jul; 285(29):22403-13. PubMed ID: 20452975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nutritional burden of methylation reactions.
    Bertolo RF; McBreairty LE
    Curr Opin Clin Nutr Metab Care; 2013 Jan; 16(1):102-8. PubMed ID: 23196816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docosahexaenoic acid in plasma phosphatidylcholine may be a potential marker for in vivo phosphatidylethanolamine N-methyltransferase activity in humans.
    da Costa KA; Sanders LM; Fischer LM; Zeisel SH
    Am J Clin Nutr; 2011 May; 93(5):968-74. PubMed ID: 21411618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a methyl-deficient diet on rat liver phosphatidylcholine biosynthesis.
    Hoffman DR; Haning JA; Cornatzer WE
    Can J Biochem; 1981 Jul; 59(7):543-50. PubMed ID: 6271368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid methylation in mammals: from biochemistry to physiological function.
    Vance DE
    Biochim Biophys Acta; 2014 Jun; 1838(6):1477-87. PubMed ID: 24184426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks.
    Shivapurkar N; Poirier LA
    Carcinogenesis; 1983 Aug; 4(8):1051-7. PubMed ID: 6872150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.
    Kharbanda KK; Mailliard ME; Baldwin CR; Beckenhauer HC; Sorrell MF; Tuma DJ
    J Hepatol; 2007 Feb; 46(2):314-21. PubMed ID: 17156888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition.
    Elango R
    J Nutr; 2020 Oct; 150(Suppl 1):2518S-2523S. PubMed ID: 33000159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsomal phosphatidylethanolamine methyltransferase: inhibition by S-adenosylhomocysteine.
    Hoffman DR; Haning JA; Cornatzer WE
    Lipids; 1981 Aug; 16(8):561-7. PubMed ID: 7278517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline metabolism in placenta: evidence for the biosynthesis of phosphatidylcholine in microsomes via the methylation pathway.
    Welsch F; Wenger WC; Stedman DB
    Placenta; 1981; 2(3):211-21. PubMed ID: 7279876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway.
    Obeid R
    Nutrients; 2013 Sep; 5(9):3481-95. PubMed ID: 24022817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs.
    McBreairty LE; Robinson JL; Furlong KR; Brunton JA; Bertolo RF
    PLoS One; 2015; 10(6):e0131563. PubMed ID: 26110793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl group metabolism in sheep.
    Snoswell AM; Xue GP
    Comp Biochem Physiol B; 1987; 88(2):383-94. PubMed ID: 3322658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic phosphatidylethanolamine N-methyltransferase expression is increased in diabetic rats.
    Hartz CS; Nieman KM; Jacobs RL; Vance DE; Schalinske KL
    J Nutr; 2006 Dec; 136(12):3005-9. PubMed ID: 17116711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia.
    Devlin AM; Singh R; Wade RE; Innis SM; Bottiglieri T; Lentz SR
    J Biol Chem; 2007 Dec; 282(51):37082-90. PubMed ID: 17971455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.