BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16400655)

  • 1. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering.
    Zhang L; Ao Q; Wang A; Lu G; Kong L; Gong Y; Zhao N; Zhang X
    J Biomed Mater Res A; 2006 May; 77(2):277-84. PubMed ID: 16400655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells.
    Wang C; Cen L; Yin S; Liu Q; Liu W; Cao Y; Cui L
    Biomaterials; 2010 Feb; 31(4):621-30. PubMed ID: 19819545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction.
    Feng C; Xu YM; Fu Q; Zhu WD; Cui L; Chen J
    J Biomed Mater Res A; 2010 Jul; 94(1):317-25. PubMed ID: 20166222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering.
    Huang Y; Onyeri S; Siewe M; Moshfeghian A; Madihally SV
    Biomaterials; 2005 Dec; 26(36):7616-27. PubMed ID: 16005510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering.
    Shi DH; Cai DZ; Zhou CR; Rong LM; Wang K; Xu YC
    Chin Med J (Engl); 2005 Sep; 118(17):1436-43. PubMed ID: 16157047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro.
    Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG
    J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering.
    Zhu C; Fan D; Duan Z; Xue W; Shang L; Chen F; Luo Y
    J Biomed Mater Res A; 2009 Jun; 89(3):829-40. PubMed ID: 19165794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fabrication and properties of a composite chitosan/type II collagen scaffold for tissue engineering cartilage].
    Shi D; Cai D; Zhou C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Apr; 19(4):278-82. PubMed ID: 15921318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional nanohydroxyapatite/chitosan scaffolds as potential tissue engineered periodontal tissue.
    Zhang YF; Cheng XR; Chen Y; Shi B; Chen XH; Xu DX; Ke J
    J Biomater Appl; 2007 Apr; 21(4):333-49. PubMed ID: 16543282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds.
    Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.
    Tan H; Wu J; Lao L; Gao C
    Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro.
    Ao Q; Wang A; Cao W; Zhang L; Kong L; He Q; Gong Y; Zhang X
    J Biomed Mater Res A; 2006 Apr; 77(1):11-8. PubMed ID: 16345091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix.
    Sarkar S; Dadhania M; Rourke P; Desai TA; Wong JY
    Acta Biomater; 2005 Jan; 1(1):93-100. PubMed ID: 16701783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.