BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16400655)

  • 21. [Preliminary study on chitosan/HAP bilayered scaffold].
    Zhang H; Wang W; Chu D; Liu Y; Guan J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation and properties of novel human-like collagen-silk fibroin scaffold for blood vessel].
    Zhu C; Fan D; Ma X; Xue W; Hui J; Chen L; Duan Z; Ma P
    Sheng Wu Gong Cheng Xue Bao; 2009 Aug; 25(8):1225-33. PubMed ID: 19938461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.
    Adekogbe I; Ghanem A
    Biomaterials; 2005 Dec; 26(35):7241-50. PubMed ID: 16011846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of substitution degree of photoreactive groups on the properties of UV-fabricated chitosan scaffold.
    Ling K; Zheng F; Li J; Tang R; Huang J; Xu Y; Zheng H; Chen J
    J Biomed Mater Res A; 2008 Oct; 87(1):52-61. PubMed ID: 18080310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications.
    Tuzlakoglu K; Alves CM; Mano JF; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel seamless elastic scaffold for vascular tissue engineering.
    Kim SH; Chung E; Kim SH; Jung Y; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(3):289-302. PubMed ID: 20178686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro].
    Wen SJ; Zhao LM; Li P; Li JX; Liu Y; Liu JL; Chen YC
    Zhonghua Yi Xue Za Zhi; 2005 Mar; 85(12):816-8. PubMed ID: 15949397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications.
    Yu LM; Kazazian K; Shoichet MS
    J Biomed Mater Res A; 2007 Jul; 82(1):243-55. PubMed ID: 17295228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of gamma-PGA/chitosan composite tissue engineering matrices.
    Hsieh CY; Tsai SP; Wang DM; Chang YN; Hsieh HJ
    Biomaterials; 2005 Oct; 26(28):5617-23. PubMed ID: 15878366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering.
    Wang A; Ao Q; Cao W; Yu M; He Q; Kong L; Zhang L; Gong Y; Zhang X
    J Biomed Mater Res A; 2006 Oct; 79(1):36-46. PubMed ID: 16758450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.
    Machado CB; Ventura JM; Lemos AF; Ferreira JM; Leite MF; Goes AM
    Biomed Mater; 2007 Jun; 2(2):124-31. PubMed ID: 18458445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering.
    Jiankang H; Dichen L; Yaxiong L; Bo Y; Hanxiang Z; Qin L; Bingheng L; Yi L
    Acta Biomater; 2009 Jan; 5(1):453-61. PubMed ID: 18675601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor.
    Xu ZC; Zhang WJ; Li H; Cui L; Cen L; Zhou GD; Liu W; Cao Y
    Biomaterials; 2008 Apr; 29(10):1464-72. PubMed ID: 18155136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.
    Sharifpoor S; Simmons CA; Labow RS; Santerre JP
    Acta Biomater; 2010 Nov; 6(11):4218-28. PubMed ID: 20601230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering.
    Zhang Y; Cheng X; Wang J; Wang Y; Shi B; Huang C; Yang X; Liu T
    Biochem Biophys Res Commun; 2006 May; 344(1):362-9. PubMed ID: 16600180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation.
    Guo T; Zhao J; Chang J; Ding Z; Hong H; Chen J; Zhang J
    Biomaterials; 2006 Mar; 27(7):1095-103. PubMed ID: 16143394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Experimental study of tissue engineered blood vessel with vascular endothelial cell and vascular smooth muscle cell].
    Pan Y; Ai YF; Huang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jan; 17(1):65-8. PubMed ID: 12916314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.