These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16401074)
1. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation. Díaz N; Suárez D; Sordo TL Biochemistry; 2006 Jan; 45(2):439-51. PubMed ID: 16401074 [TBL] [Abstract][Full Text] [Related]
2. Insights into the base catalysis exerted by the DD-transpeptidase from Streptomyces K15: a molecular dynamics study. Díaz N; Sordo TL; Suárez D Biochemistry; 2005 Mar; 44(9):3225-40. PubMed ID: 15736933 [TBL] [Abstract][Full Text] [Related]
3. A dynamic structure for the acyl-enzyme species of the antibiotic aztreonam with the Citrobacter freundii beta-lactamase revealed by infrared spectroscopy and molecular dynamics simulations. Wilkinson AS; Bryant PK; Meroueh SO; Page MG; Mobashery S; Wharton CW Biochemistry; 2003 Feb; 42(7):1950-7. PubMed ID: 12590581 [TBL] [Abstract][Full Text] [Related]
4. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase. Hata M; Tanaka Y; Fujii Y; Neya S; Hoshino T J Phys Chem B; 2005 Aug; 109(33):16153-60. PubMed ID: 16853052 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of acyl-enzyme complex formation from the Henry-Michaelis complex of class C β-lactamases with β-lactam antibiotics. Tripathi R; Nair NN J Am Chem Soc; 2013 Oct; 135(39):14679-90. PubMed ID: 24010547 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem. Suárez D; Díaz N; Merz KM J Comput Chem; 2002 Dec; 23(16):1587-600. PubMed ID: 12395427 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem. Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of class A and class C beta-lactamases by penems: crystallographic structures of a novel 1,4-thiazepine intermediate. Nukaga M; Abe T; Venkatesan AM; Mansour TS; Bonomo RA; Knox JR Biochemistry; 2003 Nov; 42(45):13152-9. PubMed ID: 14609325 [TBL] [Abstract][Full Text] [Related]
10. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. Park H; Brothers EN; Merz KM J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205 [TBL] [Abstract][Full Text] [Related]
11. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
12. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step. Massova I; Kollman PA J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates. Nagarajan R; Pratt RF Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621 [TBL] [Abstract][Full Text] [Related]
14. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams. Wang X; Minasov G; Shoichet BK Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics simulations of the TEM-1 beta-lactamase complexed with cephalothin. Díaz N; Suárez D; Merz KM; Sordo TL J Med Chem; 2005 Feb; 48(3):780-91. PubMed ID: 15689162 [TBL] [Abstract][Full Text] [Related]
16. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. Ishida T; Kato S J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425 [TBL] [Abstract][Full Text] [Related]
17. Ab initio QM/MM study of class A beta-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. Meroueh SO; Fisher JF; Schlegel HB; Mobashery S J Am Chem Soc; 2005 Nov; 127(44):15397-407. PubMed ID: 16262403 [TBL] [Abstract][Full Text] [Related]
18. Structure of the extended-spectrum class C beta-lactamase of Enterobacter cloacae GC1, a natural mutant with a tandem tripeptide insertion. Crichlow GV; Kuzin AP; Nukaga M; Mayama K; Sawai T; Knox JR Biochemistry; 1999 Aug; 38(32):10256-61. PubMed ID: 10441119 [TBL] [Abstract][Full Text] [Related]
19. Analysis of affinities of penicillins for a class C beta-lactamase by molecular dynamics simulations. Tsuchida K; Yamaotsu N; Hirono S Drug Des Discov; 1999 Aug; 16(2):145-53. PubMed ID: 10533810 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the acylation mechanism of class C beta-lactamase: pKa calculation, molecular dynamics simulation and quantum mechanical calculation. Sharma S; Bandyopadhyay P J Mol Model; 2012 Feb; 18(2):481-92. PubMed ID: 21541744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]