BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 16401082)

  • 1. Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes.
    Jiang Y; He X; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(2):533-42. PubMed ID: 16401082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone.
    He X; de Montellano PR
    J Biol Chem; 2004 Sep; 279(38):39479-84. PubMed ID: 15258138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification of alpha- and beta-Thujones (the active ingredients of absinthe): site specificity and species differences in cytochrome P450 oxidation in vitro and in vivo.
    Höld KM; Sirisoma NS; Casida JE
    Chem Res Toxicol; 2001 May; 14(5):589-95. PubMed ID: 11368559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative effects on radical recombination in CYP3A4-catalyzed oxidation of the radical clock beta-thujone.
    Jiang Y; Ortiz de Montellano PR
    Chembiochem; 2009 Mar; 10(4):650-3. PubMed ID: 19189363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes.
    Yamazaki H; Shimada T
    Arch Biochem Biophys; 1997 Oct; 346(1):161-9. PubMed ID: 9328296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alpha- and beta-thujone radical rearrangements and isomerizations. A new radical clock.
    He X; Ortiz de Montellano PR
    J Org Chem; 2004 Aug; 69(17):5684-9. PubMed ID: 15307740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of α-thujone in human hepatic preparations in vitro.
    Abass K; Reponen P; Mattila S; Pelkonen O
    Xenobiotica; 2011 Feb; 41(2):101-11. PubMed ID: 21087116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of recombinant cytochrome P450 2C10(2C9) and comparison with cytochrome P450 3A4 and other forms: effects of cytochrome P450-P450 and cytochrome P450-b5 interactions.
    Yamazaki H; Gillam EM; Dong MS; Johnson WW; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1997 Jun; 342(2):329-37. PubMed ID: 9186495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 hydroxylation of hydrocarbons: variation in the rate of oxygen rebound using cyclopropyl radical clocks including two new ultrafast probes.
    Atkinson JK; Ingold KU
    Biochemistry; 1993 Sep; 32(35):9209-14. PubMed ID: 8369287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7.
    Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA
    Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron. Comparison with other indole-containing 5-HT3 antagonists.
    Sanwald P; David M; Dow J
    Drug Metab Dispos; 1996 May; 24(5):602-9. PubMed ID: 8723743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450-The Wonderful Nanomachine Revealed through Dynamic Simulations of the Catalytic Cycle.
    Dubey KD; Shaik S
    Acc Chem Res; 2019 Feb; 52(2):389-399. PubMed ID: 30633519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes.
    Davydov R; Makris TM; Kofman V; Werst DE; Sligar SG; Hoffman BM
    J Am Chem Soc; 2001 Feb; 123(7):1403-15. PubMed ID: 11456714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1.
    Dezvarei S; Lee JHZ; Bell SG
    Enzyme Microb Technol; 2018 Apr; 111():29-37. PubMed ID: 29421034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450(cin) (CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s.
    Stok JE; Yamada S; Farlow AJ; Slessor KE; De Voss JJ
    Biochim Biophys Acta; 2013 Mar; 1834(3):688-96. PubMed ID: 23305928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes.
    Yamazaki H; Guo Z; Persmark M; Mimura M; Inoue K; Guengerich FP; Shimada T
    Mol Pharmacol; 1994 Sep; 46(3):568-77. PubMed ID: 7935340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.