These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16401087)

  • 1. Facilitating RNA structure prediction with microarrays.
    Kierzek E; Kierzek R; Turner DH; Catrina IE
    Biochemistry; 2006 Jan; 45(2):581-93. PubMed ID: 16401087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting oligonucleotide microarray data to determine RNA secondary structure: application to the 3' end of Bombyx mori R2 RNA.
    Duan S; Mathews DH; Turner DH
    Biochemistry; 2006 Aug; 45(32):9819-32. PubMed ID: 16893182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calculation of plant 5S rRNAs secondary structure.
    Joachimiak A; Nalaskowska M; Barciszewska MZ; Mashkova TD; Barciszewski J
    Acta Biochim Pol; 1989; 36(3-4):215-23. PubMed ID: 2485998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
    Mathews DH; Sabina J; Zuker M; Turner DH
    J Mol Biol; 1999 May; 288(5):911-40. PubMed ID: 10329189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of RNA secondary structure prediction using RNase H cleavage and randomized oligonucleotides.
    Kauffmann AD; Campagna RJ; Bartels CB; Childs-Disney JL
    Nucleic Acids Res; 2009 Oct; 37(18):e121. PubMed ID: 19596816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and properties of 2'-O-methyl-2-thiouridine and oligoribonucleotides containing 2'-O-methyl-2-thiouridine.
    Shohda K; Okamoto I; Wada T; Seio K; Sekine M
    Bioorg Med Chem Lett; 2000 Aug; 10(16):1795-8. PubMed ID: 10969970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
    Leontis NB; Westhof E
    RNA; 1998 Sep; 4(9):1134-53. PubMed ID: 9740131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction.
    Doshi KJ; Cannone JJ; Cobaugh CW; Gutell RR
    BMC Bioinformatics; 2004 Aug; 5():105. PubMed ID: 15296519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving RNA secondary structure prediction with structure mapping data.
    Sloma MF; Mathews DH
    Methods Enzymol; 2015; 553():91-114. PubMed ID: 25726462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences.
    Mathews DH; Turner DH
    J Mol Biol; 2002 Mar; 317(2):191-203. PubMed ID: 11902836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hybridase cleavage of RNA. IV. Oligonucleotide probes containing 2'-deoxy-2'-fluoronucleoside and arabinofuranosylcytosine].
    Shmidt S; Kuznetsova LG; Romanova EA; Nimann A; Oretskaia TS; Krynetskaia NF; Metelev VG; Shabarova ZA
    Bioorg Khim; 1991 Jun; 17(6):823-30. PubMed ID: 1723271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Mg
    Shanker S; Bandyopadhyay P
    J Biomol Struct Dyn; 2017 Aug; 35(10):2103-2122. PubMed ID: 27426235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the base discrimination ability of DNA and 2'-O-methylated RNA oligomers containing 2-thiouracil bases towards complementary RNA or DNA strands and their application to single base mismatch detection.
    Okamoto I; Seio K; Sekine M
    Bioorg Med Chem; 2008 Jun; 16(11):6034-41. PubMed ID: 18487052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An estimate of the nearest neighbor base-pair content of 5S RNA using CD and absorption spectroscopy.
    Johnson KH; Gray DM
    Biopolymers; 1991 Mar; 31(4):385-95. PubMed ID: 1863690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide sequence and secondary structure of 5S rRNA from Sphingobium chungbukense DJ77.
    Kwon HR; Kim YC
    J Microbiol; 2007 Feb; 45(1):79-82. PubMed ID: 17342061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem-loop IV of 5S rRNA lies close to the peptidyltransferase center.
    Dontsova O; Tishkov V; Dokudovskaya S; Bogdanov A; Döring T; Rinke-Appel J; Thamm S; Greuer B; Brimacombe R
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4125-9. PubMed ID: 7514294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraining ribosomal RNA conformational space.
    Favaretto P; Bhutkar A; Smith TF
    Nucleic Acids Res; 2005; 33(16):5106-11. PubMed ID: 16155182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.
    Wöhnert J; Dingley AJ; Stoldt M; Görlach M; Grzesiek S; Brown LR
    Nucleic Acids Res; 1999 Aug; 27(15):3104-10. PubMed ID: 10454606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.