These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 16401573)

  • 21. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.
    Chen X; Chen X; Wan X; Weng B; Huang Q
    Bioresour Technol; 2010 Dec; 101(23):9025-30. PubMed ID: 20674342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants.
    Yang J; Wang S; Lu Z; Yang J; Lou S
    J Hazard Mater; 2009 Aug; 168(1):331-7. PubMed ID: 19286316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications.
    Xiao W; Sun R; Hu S; Meng C; Xie B; Yi M; Wu Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126984. PubMed ID: 37734528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of coagulant amount added to activated sludge for phosphorus removal.
    Nakajima J; Mishima I
    Water Sci Technol; 2004; 50(7):287-92. PubMed ID: 15553488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydraulic and pollutant removal performance of stormwater filters under variable wetting and drying regimes.
    Hatt BE; Fletcher TD; Deletic A
    Water Sci Technol; 2007; 56(12):11-9. PubMed ID: 18075173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of phosphorus and nitrogen from domestic wastewater using a mineralized refuse-based bioreactor.
    Zhang HH; Tian JS; Zhang YM; Wu ZL; Kong XJ; Chao JY; Hu Y; Li DL
    Environ Technol; 2012; 33(1-3):173-81. PubMed ID: 22519101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption and desorption of phosphorus by shale: batch and column studies.
    Cyrus JS; Reddy GB
    Water Sci Technol; 2010; 61(3):599-606. PubMed ID: 20150695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus removal by an 'active' slag filter-a decade of full scale experience.
    Shilton AN; Elmetri I; Drizo A; Pratt S; Haverkamp RG; Bilby SC
    Water Res; 2006 Jan; 40(1):113-8. PubMed ID: 16360190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery oriented phosphorus adsorption process in decentralized advanced Johkasou.
    Ebie Y; Kondo T; Kadoya N; Mouri M; Maruyama O; Noritake S; Inamori Y; Xu K
    Water Sci Technol; 2008; 57(12):1977-81. PubMed ID: 18587187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of dyehouse effluents with a carbon-based adsorbent using anodic oxidation regeneration.
    Brown NW; Roberts EP; Garforth AA; Dryfe RA
    Water Sci Technol; 2004; 49(4):219-25. PubMed ID: 15077975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quaternized agricultural by-products as anion exchange resins.
    Wartelle LH; Marshall WE
    J Environ Manage; 2006 Jan; 78(2):157-62. PubMed ID: 16144735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution.
    Dong J; Hu J; Wang J
    J Hazard Mater; 2013 Nov; 262():845-52. PubMed ID: 24140536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blast furnace slags as sorbents of phosphate from water solutions.
    Kostura B; Kulveitová H; Lesko J
    Water Res; 2005 May; 39(9):1795-802. PubMed ID: 15899277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lead removal by a natural polysaccharide in membrane reactors.
    Reddad Z; Gérente C; Andrès Y; Le Cloirec P
    Water Sci Technol; 2004; 49(1):163-70. PubMed ID: 14979552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a constructed wetland for non-point source pollution control and river water quality purification: a case study in Taiwan.
    Wu CY; Kao CM; Lin CE; Chen CW; Lai YC
    Water Sci Technol; 2010; 61(10):2549-55. PubMed ID: 20453327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.
    Molle P; Liénard A; Grasmick A; Iwema A; Kabbabi A
    Water Sci Technol; 2005; 51(9):193-203. PubMed ID: 16042259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of iron ochre from mine drainage treatment for removal of phosphorus from wastewater.
    Dobbie KE; Heal KV; Aumônier J; Smith KA; Johnston A; Younger PL
    Chemosphere; 2009 May; 75(6):795-800. PubMed ID: 19195678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of open water on the performance of a constructed wetland for nonpoint source pollution control.
    Kim HC; Yoon CG; Son YK; Rhee HP; Lee SB
    Water Sci Technol; 2010; 62(5):1003-12. PubMed ID: 20818039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a rapid infiltration system for wastewater and river water treatment in Japan using granulated materials.
    Fujikawa Y; Sugahara M; Hamasaki T; Prasai G; Imada R; Arai T; Ozaki H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1355-61. PubMed ID: 16854808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new technology for the treatment of mercury contaminated water and soils.
    Zhuang JM; Walsh T; Lam T
    Environ Technol; 2003 Jul; 24(7):897-902. PubMed ID: 12916841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.