These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 16401573)

  • 41. The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues.
    Alvarez P; Blanco C; Granda M
    J Hazard Mater; 2007 Jun; 144(1-2):400-5. PubMed ID: 17126488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA; Zouboulis AI
    Water Res; 2004 Jan; 38(1):17-26. PubMed ID: 14630099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.
    Vanderzalm JL; Page DW; Barry KE; Dillon PJ
    Water Res; 2013 May; 47(7):2177-89. PubMed ID: 23462726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.
    Boyer TH; Persaud A; Banerjee P; Palomino P
    Water Res; 2011 Oct; 45(16):4803-14. PubMed ID: 21767859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membrane-flocculation-adsorption hybrid system in wastewater treatment: micro and nano size organic matter removal .
    Vigneswaran S; Shon HK; Boonthanon S; Ngo HH; Aim RB
    Water Sci Technol; 2004; 50(12):265-71. PubMed ID: 15686030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of emerging contaminants in water--do we have solutions?
    Ong SL; Hu J
    Water Environ Res; 2008 Sep; 80(9):771-3. PubMed ID: 18939600
    [No Abstract]   [Full Text] [Related]  

  • 47. Assessment of physical techniques to regenerate active slag filters removing phosphorus from wastewater.
    Pratt C; Shilton A; Haverkamp RG; Pratt S
    Water Res; 2009 Feb; 43(2):277-82. PubMed ID: 18976787
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus removal in constructed wetlands: can suitable alternative media be identified?
    Arias CA; Brix H
    Water Sci Technol; 2005; 51(9):267-73. PubMed ID: 16042267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Esterified coir pith as an adsorbent for the removal of Co(II) from aqueous solution.
    Parab H; Joshi S; Shenoy N; Lali A; Sarma US; Sudersanan M
    Bioresour Technol; 2008 Apr; 99(6):2083-6. PubMed ID: 17611104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.
    Krishnan KA; Haridas A
    J Hazard Mater; 2008 Apr; 152(2):527-35. PubMed ID: 17706344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide.
    Genz A; Kornmüller A; Jekel M
    Water Res; 2004 Sep; 38(16):3523-30. PubMed ID: 15325178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater--a short review.
    Bhatnagar A; Sillanpää M
    Adv Colloid Interface Sci; 2009 Nov; 152(1-2):26-38. PubMed ID: 19833317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphorus removal in a vertical upflow constructed wetland system.
    Farahbakhshazad N; Morrison GM
    Water Sci Technol; 2003; 48(5):43-50. PubMed ID: 14621146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of the physical structure of a porous Ca-based sorbent on its phosphorus removal capacity.
    Khadhraoui M; Watanabe T; Kuroda M
    Water Res; 2002 Sep; 36(15):3711-8. PubMed ID: 12369518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of nitrogen and phosphorus on [C]lignocellulose decomposition by stream wood microflora.
    Aumen NG; Bottomley PJ; Gregory SV
    Appl Environ Microbiol; 1985 May; 49(5):1113-8. PubMed ID: 16346784
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions.
    Nakarmi A; Bourdo SE; Ruhl L; Kanel S; Nadagouda M; Kumar Alla P; Pavel I; Viswanathan T
    J Environ Manage; 2020 Oct; 272():111048. PubMed ID: 32677621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology.
    Kim J; Mann JD; Kwon S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(1):87-100. PubMed ID: 16401573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Arsenic removal from water using lignocellulose adsorption medium (LAM).
    Kim J; Mann JD; Spencer JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1529-42. PubMed ID: 16835109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of phosphorus from water using lignocellulosic material modified with iron species from acid mine drainage.
    Shin EW; Han JS; Min SH
    Environ Technol; 2004 Feb; 25(2):185-91. PubMed ID: 15116876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.