BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16401770)

  • 1. Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy.
    Fedak PW; Moravec CS; McCarthy PM; Altamentova SM; Wong AP; Skrtic M; Verma S; Weisel RD; Li RK
    Circulation; 2006 Jan; 113(2):238-45. PubMed ID: 16401770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition.
    Rapti M; Atkinson SJ; Lee MH; Trim A; Moss M; Murphy G
    Biochem J; 2008 Apr; 411(2):433-9. PubMed ID: 18215140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered expression of ADAMs (A Disintegrin And Metalloproteinase) in fibrillating human atria.
    Arndt M; Lendeckel U; Röcken C; Nepple K; Wolke C; Spiess A; Huth C; Ansorge S; Klein HU; Goette A
    Circulation; 2002 Feb; 105(6):720-5. PubMed ID: 11839628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIMP-3 deficiency leads to dilated cardiomyopathy.
    Fedak PW; Smookler DS; Kassiri Z; Ohno N; Leco KJ; Verma S; Mickle DA; Watson KL; Hojilla CV; Cruz W; Weisel RD; Li RK; Khokha R
    Circulation; 2004 Oct; 110(16):2401-9. PubMed ID: 15262835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas.
    Karan D; Lin FC; Bryan M; Ringel J; Moniaux N; Lin MF; Batra SK
    Int J Oncol; 2003 Nov; 23(5):1365-71. PubMed ID: 14532978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices.
    Kwak HI; Mendoza EA; Bayless KJ
    Matrix Biol; 2009 Oct; 28(8):470-9. PubMed ID: 19666115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules.
    Ludwig A; Hundhausen C; Lambert MH; Broadway N; Andrews RC; Bickett DM; Leesnitzer MA; Becherer JD
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):161-71. PubMed ID: 15777180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of ADAM (a disintegrin and metalloproteinase) genes between human first trimester villous and extravillous trophoblast cells.
    Takahashi H; Yuge K; Matsubara S; Ohkuchi A; Kuwata T; Usui R; Suzuki M; Takizawa T
    J Nippon Med Sch; 2014; 81(3):122-9. PubMed ID: 24998958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening.
    Moss ML; Rasmussen FH
    Anal Biochem; 2007 Jul; 366(2):144-8. PubMed ID: 17548045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LC-MS based cleavage site profiling of the proteases ADAM10 and ADAM17 using proteome-derived peptide libraries.
    Tucher J; Linke D; Koudelka T; Cassidy L; Tredup C; Wichert R; Pietrzik C; Becker-Pauly C; Tholey A
    J Proteome Res; 2014 Apr; 13(4):2205-14. PubMed ID: 24635658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shedding of klotho by ADAMs in the kidney.
    van Loon EP; Pulskens WP; van der Hagen EA; Lavrijsen M; Vervloet MG; van Goor H; Bindels RJ; Hoenderop JG
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F359-68. PubMed ID: 26155844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes.
    Ebsen H; Lettau M; Kabelitz D; Janssen O
    Mol Immunol; 2015 Jun; 65(2):416-28. PubMed ID: 25745808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of a disintegrin and metalloproteinase 10 and 17 in shedding of tumor necrosis factor-alpha.
    Hikita A; Tanaka N; Yamane S; Ikeda Y; Furukawa H; Tohma S; Suzuki R; Tanaka S; Mitomi H; Fukui N
    Biochem Cell Biol; 2009 Aug; 87(4):581-93. PubMed ID: 19767822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytically active ADAM10 and ADAM17 carried on membrane microvesicles in human abdominal aortic aneurysms.
    Folkesson M; Li C; Frebelius S; Swedenborg J; Wågsäter D; Williams KJ; Eriksson P; Roy J; Liu ML
    Thromb Haemost; 2015 Nov; 114(6):1165-74. PubMed ID: 26422658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ADAM10 as a major TNF sheddase in ADAM17-deficient fibroblasts.
    Mezyk-Kopeć R; Bzowska M; Stalińska K; Chełmicki T; Podkalicki M; Jucha J; Kowalczyk K; Mak P; Bereta J
    Cytokine; 2009 Jun; 46(3):309-15. PubMed ID: 19346138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer.
    Pruessmeyer J; Ludwig A
    Semin Cell Dev Biol; 2009 Apr; 20(2):164-74. PubMed ID: 18951988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA receptors ameliorate Hcy-mediated integrin shedding and constrictive collagen remodeling in microvascular endothelial cells.
    Shastry S; Tyagi N; Moshal KS; Lominadze D; Hayden MR; Tyagi SC
    Cell Biochem Biophys; 2006; 45(2):157-65. PubMed ID: 16757816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of beta1D-integrin function in human ischemic cardiomyopathy.
    Pfister R; Acksteiner C; Baumgarth J; Burst V; Geissler HJ; Margulies KB; Houser S; Bloch W; Flesch M
    Basic Res Cardiol; 2007 May; 102(3):257-64. PubMed ID: 17186162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-control of HGF regulation on human trophoblast cell invasion via enhancing c-Met receptor shedding by ADAM10 and ADAM17.
    Yang Y; Wang Y; Zeng X; Ma XJ; Zhao Y; Qiao J; Cao B; Li YX; Ji L; Wang YL
    J Clin Endocrinol Metab; 2012 Aug; 97(8):E1390-401. PubMed ID: 22689693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor.
    Scilabra SD; Pigoni M; Pravatá V; Schätzl T; Müller SA; Troeberg L; Lichtenthaler SF
    Sci Rep; 2018 Oct; 8(1):14697. PubMed ID: 30279425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.