These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1640185)

  • 1. Sodium-extruding and calcium-extruding sodium/calcium exchangers display similar calcium affinities.
    Schoenmakers TJ; Flik G
    J Exp Biol; 1992 Jul; 168():151-9. PubMed ID: 1640185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium absorption by fish intestine: the involvement of ATP- and sodium-dependent calcium extrusion mechanisms.
    Flik G; Schoenmakers TJ; Groot JA; van Os CH; Wendelaar Bonga SE
    J Membr Biol; 1990 Jan; 113(1):13-22. PubMed ID: 2137539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of ATP- and Na(+)-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia.
    Verbost PM; Schoenmakers TJ; Flik G; Wendelaar Bonga SE
    J Exp Biol; 1994 Jan; 186():95-108. PubMed ID: 7964377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence against parallel operation of sodium/calcium antiport and ATP-driven calcium transport in plasma membrane vesicles from kidney tubule cells.
    Schönfeld W; Menke KH; Schönfeld R; Repke KR
    Biochim Biophys Acta; 1984 Mar; 770(2):183-94. PubMed ID: 6320885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid interaction of FRCRCFa with the cytosolic side of the cardiac sarcolemma Na(+)-Ca2+ exchanger blocks the ion transport without preventing the binding of either sodium or calcium.
    Khananshvili D; Baazov D; Weil-Maslansky E; Shaulov G; Mester B
    Biochemistry; 1996 Dec; 35(49):15933-40. PubMed ID: 8961960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actions of cadmium on basolateral plasma membrane proteins involved in calcium uptake by fish intestine.
    Schoenmakers TJ; Klaren PH; Flik G; Lock RA; Pang PK; Bonga SE
    J Membr Biol; 1992 May; 127(3):161-72. PubMed ID: 1322993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry properties of the Na+-Ca2+ exchange mechanism in cardiac sarcolemmal vesicles.
    Philipson KD
    Biochim Biophys Acta; 1985 Dec; 821(2):367-76. PubMed ID: 4063371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-Ca2+ exchange in the axolemma-rich membrane vesicle preparations from the walking-leg nerves of the American lobster.
    Peterson AA; Matsumura F; McGroarty EJ
    Biochim Biophys Acta; 1984 Mar; 771(1):53-8. PubMed ID: 6704389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+)-Ca2+ antiporter activity of rat hepatocytes. Effect of adrenalectomy on Ca2+ uptake and release from plasma membrane vesicles.
    Studer RK; Borle AB
    Biochim Biophys Acta; 1992 Feb; 1134(1):7-16. PubMed ID: 1543758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane.
    Reid DM; Friedel U; Molday RS; Cook NJ
    Biochemistry; 1990 Feb; 29(6):1601-7. PubMed ID: 2334719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Na+/Ca2+ exchange in renal BLMV by IP3 depends on site of action and direction of Ca2+ flux.
    Fraser CL; Cummings C; Cassafer G
    Am J Physiol; 1994 May; 266(5 Pt 2):F785-90. PubMed ID: 8203562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The putative amino-terminal signal peptide of the cloned rat brain Na(+)-Ca2+ exchanger gene (RBE-1) is not mandatory for functional expression.
    Furman I; Cook O; Kasir J; Low W; Rahamimoff H
    J Biol Chem; 1995 Aug; 270(32):19120-7. PubMed ID: 7642578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometry of the sodium-calcium exchanger in nerve terminals.
    Barzilai A; Rahamimoff H
    Biochemistry; 1987 Sep; 26(19):6113-8. PubMed ID: 3689764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na(+)-Ca2+ exchange activity in synaptic plasma membranes derived from the electric organ of Torpedo ocellata.
    Tessari M; Rahamimoff H
    Biochim Biophys Acta; 1991 Jul; 1066(2):208-18. PubMed ID: 1854784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-Ca2+ exchange in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Shelat H
    Am J Physiol; 1988 Mar; 254(3 Pt 1):C441-9. PubMed ID: 2831733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The squid axon as a model for studying plasma membrane mechanisms for calcium regulation.
    DiPolo R; Beaugé L
    Hypertension; 1987 Nov; 10(5 Pt 2):I15-9. PubMed ID: 2445678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium efflux in rat lens: Na/Ca-exchange related to cataract induced by selenite.
    Wang Z; Hess JL; Bunce GE
    Curr Eye Res; 1992 Jul; 11(7):625-32. PubMed ID: 1325893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.