These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Planar electrochemical sensors for biomedical applications. Laschi S; Mascini M Med Eng Phys; 2006 Dec; 28(10):934-43. PubMed ID: 16822696 [TBL] [Abstract][Full Text] [Related]
46. Electrochemical magneto immunosensing of antibiotic residues in milk. Zacco E; Adrian J; Galve R; Marco MP; Alegret S; Pividori MI Biosens Bioelectron; 2007 Apr; 22(9-10):2184-91. PubMed ID: 17126544 [TBL] [Abstract][Full Text] [Related]
47. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Wu ZS; Zheng F; Shen GL; Yu RQ Biomaterials; 2009 May; 30(15):2950-5. PubMed ID: 19254812 [TBL] [Abstract][Full Text] [Related]
48. Maltose-binding protein: a versatile platform for prototyping biosensing. Medintz IL; Deschamps JR Curr Opin Biotechnol; 2006 Feb; 17(1):17-27. PubMed ID: 16413768 [TBL] [Abstract][Full Text] [Related]
49. Nanomaterial-based amplified transduction of biomolecular interactions. Wang J Small; 2005 Nov; 1(11):1036-43. PubMed ID: 17193390 [TBL] [Abstract][Full Text] [Related]
50. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Boozer C; Kim G; Cong S; Guan H; Londergan T Curr Opin Biotechnol; 2006 Aug; 17(4):400-5. PubMed ID: 16837183 [TBL] [Abstract][Full Text] [Related]
51. Square wave voltammetric detection of Anthrax utilizing a peptide for selective recognition of a protein biomarker. Huan TN; Ha VT; Hung le Q; Yoon MY; Han SH; Chung H Biosens Bioelectron; 2009 Oct; 25(2):469-74. PubMed ID: 19729294 [TBL] [Abstract][Full Text] [Related]
52. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. Rodriguez-Mozaz S; Lopez de Alda MJ; Barceló D J Chromatogr A; 2007 Jun; 1152(1-2):97-115. PubMed ID: 17275010 [TBL] [Abstract][Full Text] [Related]
53. A new immunosensing method by galactose oxidase-mediated electrocatalysis using a virtual beaker array. Jeon SI; Hong JW; Yoon HC Biotechnol Lett; 2006 Sep; 28(17):1401-8. PubMed ID: 16858510 [TBL] [Abstract][Full Text] [Related]
55. Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization. Dong H; Li CM; Chen W; Zhou Q; Zeng ZX; Luong JH Anal Chem; 2006 Nov; 78(21):7424-31. PubMed ID: 17073408 [TBL] [Abstract][Full Text] [Related]
56. Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Mucelli SP; Zamuner M; Tormen M; Stanta G; Ugo P Biosens Bioelectron; 2008 Jul; 23(12):1900-3. PubMed ID: 18407487 [TBL] [Abstract][Full Text] [Related]
57. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Torisawa YS; Ohara N; Nagamine K; Kasai S; Yasukawa T; Shiku H; Matsue T Anal Chem; 2006 Nov; 78(22):7625-31. PubMed ID: 17105152 [TBL] [Abstract][Full Text] [Related]
58. Au nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Wang J; Profitt JA; Pugia MJ; Suni II Anal Chem; 2006 Mar; 78(6):1769-73. PubMed ID: 16536410 [TBL] [Abstract][Full Text] [Related]
59. Substrate independent assembly of optical structures guided by biomolecular interactions. Böcking T; Kilian KA; Reece PJ; Gaus K; Gal M; Gooding JJ ACS Appl Mater Interfaces; 2010 Nov; 2(11):3270-5. PubMed ID: 21053921 [TBL] [Abstract][Full Text] [Related]
60. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Liu A Biosens Bioelectron; 2008 Oct; 24(2):167-77. PubMed ID: 18524566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]