These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 164026)

  • 1. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase.
    Anderson RA; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):394-7. PubMed ID: 164026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase.
    Anderson RA; Vallee BL
    Biochemistry; 1977 Oct; 16(20):4388-93. PubMed ID: 199235
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.
    Anderson RA; Kennedy FS; Vallee BL
    Biochemistry; 1976 Aug; 15(17):3710-6. PubMed ID: 782521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons.
    Zukin RS; Hollis DP
    J Biol Chem; 1975 Feb; 250(3):835-42. PubMed ID: 163241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron paramagnetic resonance spectra of some active cobalt(II) substituted metalloenzymes and other cobalt(II) complexes.
    Kennedy FC; Hill HA; Kaden TA; Vallee BL
    Biochem Biophys Res Commun; 1972 Sep; 48(6):1533-9. PubMed ID: 4342715
    [No Abstract]   [Full Text] [Related]  

  • 7. Escherichia coli Co(II) alkaline phosphatase. Absorption, circular dichroism, and magnetic circular dichroism of the d-d electronic transitions.
    Taylor JS; Lau CY; Applebury ML; Coleman JE
    J Biol Chem; 1973 Sep; 248(17):6216-20. PubMed ID: 4580054
    [No Abstract]   [Full Text] [Related]  

  • 8. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic circular dichroic spectra of cobalt(II) substituted metalloenzymes.
    Holmquist B; Kaden TA; Vallee BL
    Biochemistry; 1975 Apr; 14(7):1454-61. PubMed ID: 235952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CD spectra and redox reactions of superoxide dismutase from Escherichia coli B: evidence for a Mn(III) enzyme.
    Keele BB; Giovagnoli C; Rotilio G
    Physiol Chem Phys; 1975; 7(1):1-6. PubMed ID: 165558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative cooperativity and half of the sites reactivity. Alkaline phosphatases of Escherichia coli with Zn2+, Co2+, Cd2+, Mn2+, and Cu2+ in the active sites.
    Chappelet-Tordo D; Iwatsubo M; Lazdunski M
    Biochemistry; 1974 Aug; 13(18):3754-62. PubMed ID: 4604809
    [No Abstract]   [Full Text] [Related]  

  • 12. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE; Nakamura K; Chlebowski JF
    J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange inert Co (III)-carboxypeptidase A: a catalytically inactive metallocarboxypeptidase.
    Van Wart HE; Vallee BL
    Biochem Biophys Res Commun; 1977 Apr; 75(3):732-8. PubMed ID: 193501
    [No Abstract]   [Full Text] [Related]  

  • 14. A proton relaxation rate study of the copper analog of Escherichia coli alkaline phosphatase.
    Zukin RS; Hollis DP
    J Biol Chem; 1974 Jan; 249(2):656-8. PubMed ID: 4358560
    [No Abstract]   [Full Text] [Related]  

  • 15. Corroborative models of the cobalt(II) inhibited Fe/Mn superoxide dismutases.
    Scarpellini M; Wu AJ; Kampf JW; Pecoraro VL
    Inorg Chem; 2005 Jul; 44(14):5001-10. PubMed ID: 15998028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectroscopic investigation of cobalt(II) substituted alkaline phosphatase.
    Banci L; Bertini I; Gallori E; Luchinat C; Paoletti F; Polsinelli M; Viezzoli MS
    J Inorg Biochem; 1987 Jun; 30(2):77-85. PubMed ID: 3298544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of zinc and other metal ions on the stability and activity of Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Aug; 124(1):25-30. PubMed ID: 4942389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline phosphatase from the hyperthermophilic bacterium T. maritima requires cobalt for activity.
    Wojciechowski CL; Cardia JP; Kantrowitz ER
    Protein Sci; 2002 Apr; 11(4):903-11. PubMed ID: 11910033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.