BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16402663)

  • 1. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization.
    Devos Y; Reheul D; De Schrijver A
    Environ Biosafety Res; 2005; 4(2):71-87. PubMed ID: 16402663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Definition and feasibility of isolation distances for transgenic maize cultivation.
    Sanvido O; Widmer F; Winzeler M; Streit B; Szerencsits E; Bigler F
    Transgenic Res; 2008 Jun; 17(3):317-35. PubMed ID: 17562214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial impact of isolation distances between parcels of GM and non-GM maize.
    Devos Y; Reheul D; Thas O; De Clercq EM; Cordemans K
    Commun Agric Appl Biol Sci; 2006; 71(1):25-8. PubMed ID: 17191467
    [No Abstract]   [Full Text] [Related]  

  • 4. [Literature review of the dispersal of transgenes from genetically modified maize].
    Ricroch A; Bergé JB; Messéan A
    C R Biol; 2009 Oct; 332(10):861-75. PubMed ID: 19819407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distances needed to limit cross-fertilization between GM and conventional maize in Europe.
    Riesgo L; Areal FJ; Sanvido O; Rodríguez-Cerezo E
    Nat Biotechnol; 2010 Aug; 28(8):780-2. PubMed ID: 20697398
    [No Abstract]   [Full Text] [Related]  

  • 6. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.
    Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA
    Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize.
    Melé E; Nadal A; Messeguer J; Melé-Messeguer M; Palaudelmàs M; Peñas G; Piferrer X; Capellades G; Serra J; Pla M
    Sci Rep; 2015 Nov; 5():17106. PubMed ID: 26596213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to search for optimal field allocations of transgenic maize in the context of co-existence.
    Devos Y; Cougnon M; Thas O; Reheul D
    Environ Biosafety Res; 2008; 7(2):97-104. PubMed ID: 18549771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.
    Pla M; La Paz JL; Peñas G; García N; Palaudelmàs M; Esteve T; Messeguer J; Melé E
    Transgenic Res; 2006 Apr; 15(2):219-28. PubMed ID: 16604462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How can flexibility be integrated into coexistence regulations? A review.
    Devos Y; Dillen K; Demont M
    J Sci Food Agric; 2014 Feb; 94(3):381-7. PubMed ID: 23965758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-mediated pollen flow from genetically modified to conventional crops.
    Kuparinen A; Schurr F; Tackenberg O; O'Hara RB
    Ecol Appl; 2007 Mar; 17(2):431-40. PubMed ID: 17489250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional prediction of maize pollen dispersal and cross-pollination, and the effects of windbreaks.
    Ushiyama T; Du M; Inoue S; Shibaike H; Yonemura S; Kawashima S; Amano K
    Environ Biosafety Res; 2009; 8(4):183-202. PubMed ID: 20883658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the influence of field size on maize gene flow using SSR analysis.
    Palaudelmàs M; Melé E; Monfort A; Serra J; Salvia J; Messeguer J
    Transgenic Res; 2012 Jun; 21(3):471-83. PubMed ID: 21898271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination.
    Loos C; Seppelt R; Meier-Bethke S; Schiemann J; Richter O
    J Theor Biol; 2003 Nov; 225(2):241-55. PubMed ID: 14575658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches.
    Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J
    Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
    Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F
    PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Romanian experience and perspective on the commercial cultivation of genetically modified crops in Europe.
    Ichim MC
    Transgenic Res; 2019 Feb; 28(1):1-7. PubMed ID: 30238377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Varations in maize pollen emission and deposition in relation to microclimate.
    Jarosz N; Loubet B; Durand B; Foueillassar X; Huber L
    Environ Sci Technol; 2005 Jun; 39(12):4377-84. PubMed ID: 16047770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new isolation device for shortening gene flow distance in small-scale transgenic maize breeding.
    Zhang L; Huo S; Cao Y; Xie X; Tan Y; Zhang Y; Zhao H; He P; Guo J; Xia Q; Zhou X; Long H; Guo A
    Sci Rep; 2020 Sep; 10(1):15733. PubMed ID: 32978485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of flowering time and distance between pollen source and recipient on maize.
    Nieh SC; Lin WS; Hsu YH; Shieh GJ; Kuo BJ
    GM Crops Food; 2014; 5(4):287-95. PubMed ID: 25523174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.