These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 16402794)

  • 1. Thermal conductance of an individual single-wall carbon nanotube above room temperature.
    Pop E; Mann D; Wang Q; Goodson K; Dai H
    Nano Lett; 2006 Jan; 6(1):96-100. PubMed ID: 16402794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative differential conductance and hot phonons in suspended nanotube molecular wires.
    Pop E; Mann D; Cao J; Wang Q; Goodson K; Dai H
    Phys Rev Lett; 2005 Oct; 95(15):155505. PubMed ID: 16241738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the thermal conductivity of a single carbon nanotube.
    Fujii M; Zhang X; Xie H; Ago H; Takahashi K; Ikuta T; Abe H; Shimizu T
    Phys Rev Lett; 2005 Aug; 95(6):065502. PubMed ID: 16090962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductance and thermopower of an individual single-wall carbon nanotube.
    Yu C; Shi L; Yao Z; Li D; Majumdar A
    Nano Lett; 2005 Sep; 5(9):1842-6. PubMed ID: 16159235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.
    Wang HD; Liu JH; Zhang X; Zhang RF; Wei F
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2939-43. PubMed ID: 26353517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films.
    Panzer MA; Duong HM; Okawa J; Shiomi J; Wardle BL; Maruyama S; Goodson KE
    Nano Lett; 2010 Jul; 10(7):2395-400. PubMed ID: 20503983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport measurements of individual multiwalled nanotubes.
    Kim P; Shi L; Majumdar A; McEuen PL
    Phys Rev Lett; 2001 Nov; 87(21):215502. PubMed ID: 11736348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves".
    Mingo N; Broido DA
    Nano Lett; 2005 Jul; 5(7):1221-5. PubMed ID: 16178214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes.
    Pop E
    Nanotechnology; 2008 Jul; 19(29):295202. PubMed ID: 21730598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method.
    Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP
    Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal physics in carbon nanotube growth kinetics.
    Louchev OA; Kanda H; Rosén A; Bolton K
    J Chem Phys; 2004 Jul; 121(1):446-56. PubMed ID: 15260566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy loss of the electron system in individual single-walled carbon nanotubes.
    Santavicca DF; Chudow JD; Prober DE; Purewal MS; Kim P
    Nano Lett; 2010 Nov; 10(11):4538-43. PubMed ID: 20931994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors.
    Yu C; Choi K; Yin L; Grunlan JC
    ACS Nano; 2011 Oct; 5(10):7885-92. PubMed ID: 21899362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single carbon nanotube-based reversible regulation of biological motor activity.
    Inoue Y; Nagata M; Matsutaka H; Okada T; Sato MK; Ishijima A
    ACS Nano; 2015; 9(4):3677-84. PubMed ID: 25767902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.