These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16403611)

  • 21. Elimination of facial nerve stimulation by reimplantation in cochlear implant subjects.
    Battmer R; Pesch J; Stöver T; Lesinski-Schiedat A; Lenarz M; Lenarz T
    Otol Neurotol; 2006 Oct; 27(7):918-22. PubMed ID: 17006341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in the hearing and discomfort thresholds in patients with the Clark/nucleus inner ear prosthesis].
    Battmer RD; Lehnhardt E; Laszig R
    Laryngol Rhinol Otol (Stuttg); 1988 Aug; 67(8):412-5. PubMed ID: 3210875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cochlear implant electrode-pitch function.
    Baumann U; Nobbe A
    Hear Res; 2006 Mar; 213(1-2):34-42. PubMed ID: 16442249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stiffness properties for Nucleus standard straight and contour electrode arrays.
    Kha HN; Chen BK; Clark GM; Jones R
    Med Eng Phys; 2004 Oct; 26(8):677-85. PubMed ID: 15471696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities.
    Frijns JH; Kalkman RK; Vanpoucke FJ; Bongers JS; Briaire JJ
    Acta Otolaryngol; 2009 Apr; 129(4):433-9. PubMed ID: 19117170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contour electrode array: safety study and initial patient trials of a new perimodiolar design.
    Tykocinski M; Saunders E; Cohen LT; Treaba C; Briggs RJ; Gibson P; Clark GM; Cowan RS
    Otol Neurotol; 2001 Jan; 22(1):33-41. PubMed ID: 11314713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking.
    Cohen LT; Richardson LM; Saunders E; Cowan RS
    Hear Res; 2003 May; 179(1-2):72-87. PubMed ID: 12742240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relation between neural response telemetry thresholds, T- and C-levels, and loudness judgments in 12 adult nucleus 24 cochlear implant recipients.
    Potts LG; Skinner MW; Gotter BD; Strube MJ; Brenner CA
    Ear Hear; 2007 Aug; 28(4):495-511. PubMed ID: 17609612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the pitch structure associated with multiple rates and places for cochlear implant users.
    Stohl JS; Throckmorton CS; Collins LM
    J Acoust Soc Am; 2008 Feb; 123(2):1043-53. PubMed ID: 18247906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histopathology of human cochlear implants: correlation of psychophysical and anatomical measures.
    Khan AM; Whiten DM; Nadol JB; Eddington DK
    Hear Res; 2005 Jul; 205(1-2):83-93. PubMed ID: 15953517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved fundamental frequency coding in cochlear implant signal processing.
    Milczynski M; Wouters J; van Wieringen A
    J Acoust Soc Am; 2009 Apr; 125(4):2260-71. PubMed ID: 19354401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Practical model description of peripheral neural excitation in cochlear implant recipients: 3. ECAP during bursts and loudness as function of burst duration.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):112-21. PubMed ID: 19068227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of widening electrode separation on current steering performance.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2011; 32(2):221-9. PubMed ID: 21063206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practical model description of peripheral neural excitation in cochlear implant recipients: 4. model development at low pulse rates: general model and application to individuals.
    Cohen LT
    Hear Res; 2009 Feb; 248(1-2):15-30. PubMed ID: 19110049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of frictional conditions between electrode array and endosteum lining for use in cochlear implant models.
    Kha HN; Chen BK
    J Biomech; 2006; 39(9):1752-6. PubMed ID: 15982662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of programming threshold and maplaw settings on acoustic thresholds and speech discrimination with the MED-EL COMBI 40+ cochlear implant.
    Boyd PJ
    Ear Hear; 2006 Dec; 27(6):608-18. PubMed ID: 17086073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of intensity upon pitch perception in cochlear implant recipients.
    Arnoldner C; Kaider A; Hamzavi J
    Laryngoscope; 2006 Oct; 116(10):1760-5. PubMed ID: 17003738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of contralateral noise on 40-Hz and 80-Hz auditory steady-state responses.
    Maki A; Kawase T; Kobayashi T
    Ear Hear; 2009 Oct; 30(5):584-9. PubMed ID: 19550336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.