BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16403965)

  • 1. Interaction of hypohalous acids and heme peroxidases with unsaturated phosphatidylcholines.
    Spalteholz H; Wenske K; Arnhold J
    Biofactors; 2005; 24(1-4):67-76. PubMed ID: 16403965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hypochlorous acid on unsaturated phosphatidylcholines.
    Arnhold J; Osipov AN; Spalteholz H; Panasenko OM; Schiller J
    Free Radic Biol Med; 2001 Nov; 31(9):1111-9. PubMed ID: 11677044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of chloride on modification of unsaturated phosphatidylcholines by the myeloperoxidase/hydrogen peroxide/bromide system.
    Panasenko OM; Vakhrusheva T; Tretyakov V; Spalteholz H; Arnhold J
    Chem Phys Lipids; 2007; 149(1-2):40-51. PubMed ID: 17604010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of exogenous hypochlorite or hypochlorite produced by myeloperoxidase + H2O2 + Cl- system with unsaturated phosphatidylcholines.
    Panasenko OM; Osipov AN; Schiller J; Arnhold J
    Biochemistry (Mosc); 2002 Aug; 67(8):889-900. PubMed ID: 12223088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leukocytic myeloperoxidase-mediated formation of bromohydrins and lysophospholipids from unsaturated phosphatidylcholines.
    Panasenko OM; Spalteholz H; Schiller J; Arnhold J
    Biochemistry (Mosc); 2006 May; 71(5):571-80. PubMed ID: 16732739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of products upon the reaction of hypohalous acid with unsaturated phosphatidylcholines.
    Spalteholz H; Wenske K; Panasenko OM; Schiller J; Arnhold J
    Chem Phys Lipids; 2004 Apr; 129(1):85-96. PubMed ID: 14998730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.
    Spalteholz H; Panasenko OM; Arnhold J
    Arch Biochem Biophys; 2006 Jan; 445(2):225-34. PubMed ID: 16111649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines.
    Panasenko OM; Spalteholz H; Schiller J; Arnhold J
    Free Radic Biol Med; 2003 Mar; 34(5):553-62. PubMed ID: 12614844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride.
    Senthilmohan R; Kettle AJ
    Arch Biochem Biophys; 2006 Jan; 445(2):235-44. PubMed ID: 16125131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular peroxidase 1 catalyzes the formation of hypohalous acids: characterization of its substrate specificity and enzymatic properties.
    Li H; Cao Z; Zhang G; Thannickal VJ; Cheng G
    Free Radic Biol Med; 2012 Nov; 53(10):1954-9. PubMed ID: 22982576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.
    Pattison DI; Davies MJ; Hawkins CL
    Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxidase-mediated bromination of unsaturated fatty acids to form bromohydrins.
    Carr AC; Winterbourn CC; van den Berg JJ
    Arch Biochem Biophys; 1996 Mar; 327(2):227-33. PubMed ID: 8619607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate.
    Furtmüller PG; Burner U; Obinger C
    Biochemistry; 1998 Dec; 37(51):17923-30. PubMed ID: 9922160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox buffering of hypochlorous acid by thiocyanate in physiologic fluids.
    Ashby MT; Carlson AC; Scott MJ
    J Am Chem Soc; 2004 Dec; 126(49):15976-7. PubMed ID: 15584727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid.
    Winterbourn CC; van den Berg JJ; Roitman E; Kuypers FA
    Arch Biochem Biophys; 1992 Aug; 296(2):547-55. PubMed ID: 1321589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells.
    Rayner BS; Love DT; Hawkins CL
    Free Radic Biol Med; 2014 Jun; 71():240-255. PubMed ID: 24632382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of myocardial dihydrolipoamide dehydrogenase by myeloperoxidase systems: effect of halides, nitrite and thiol compounds.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1999 Feb; 30(2):105-17. PubMed ID: 10193578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of phosphatidylserine by hypochlorous acid.
    Flemmig J; Spalteholz H; Schubert K; Meier S; Arnhold J
    Chem Phys Lipids; 2009 Sep; 161(1):44-50. PubMed ID: 19577554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatography-electrospray ionization mass spectrometry.
    Schröter J; Griesinger H; Reuÿ E; Schulz M; Riemer T; Süÿ R; Schiller J; Fuchs B
    J Chromatogr A; 2016 Mar; 1439():89-96. PubMed ID: 26700153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1.
    Paumann-Page M; Katz RS; Bellei M; Schwartz I; Edenhofer E; Sevcnikar B; Soudi M; Hofbauer S; Battistuzzi G; Furtmüller PG; Obinger C
    J Biol Chem; 2017 Mar; 292(11):4583-4592. PubMed ID: 28154175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.