These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16404106)

  • 1. A simulation-based training system for surgical wound debridement.
    Seevinck J; Scerbo MW; Belfore LA; Weireter LJ; Crouch JR; Shen Y; McKenzie FD; Garcia HM; Girtelschmid S; Baydogan E; Schmidt EA
    Stud Health Technol Inform; 2006; 119():491-6. PubMed ID: 16404106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realistic irrigation visualization in a surgical wound debridement simulator.
    Shen Y; Seevinck J; Baydogan E
    Stud Health Technol Inform; 2006; 119():512-4. PubMed ID: 16404110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A surgical simulator for planning and performing repair of cleft lips.
    Schendel S; Montgomery K; Sorokin A; Lionetti G
    J Craniomaxillofac Surg; 2005 Aug; 33(4):223-8. PubMed ID: 15975810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulator to explore the role of haptic feedback in cataract surgery training.
    Doyle L; Gauthier N; Ramanathan S; Okamura A
    Stud Health Technol Inform; 2008; 132():106-11. PubMed ID: 18391267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A surgical simulator for cleft lip planning and repair.
    Montgomery K; Sorokin A; Lionetti G; Schendel S
    Stud Health Technol Inform; 2003; 94():204-9. PubMed ID: 15455894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic rendering of tissue cutting with scissors.
    Weiss DJ; Okamura AM
    Stud Health Technol Inform; 2004; 98():407-9. PubMed ID: 15544316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic herniorrhaphy simulation with robust and fast collision detection algorithm.
    Shen Y; Devarajan V; Eberhart R
    Stud Health Technol Inform; 2005; 111():458-64. PubMed ID: 15718778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphic and haptic modelling of the oesophagus for VR-based medical simulation.
    Choi C; Kim J; Han H; Ahn B; Kim J
    Int J Med Robot; 2009 Sep; 5(3):257-66. PubMed ID: 19444793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering requirements for a haptic simulator for knee arthroscopy training.
    Zivanovic A; Dibble E; Davies B; Moody L; Waterworth A
    Stud Health Technol Inform; 2003; 94():413-8. PubMed ID: 15455938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel laparoscopic mesh placement part task trainer.
    Devarajan V; Wang X; Shen Y; Eberhart R; Watson MJ; Jones D; Villegas L
    Int J Med Robot; 2006 Dec; 2(4):312-20. PubMed ID: 17520649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A haptic VR milling surgery simulator--using high-resolution CT-data.
    Eriksson M; Dixon M; Wikander J
    Stud Health Technol Inform; 2006; 119():138-43. PubMed ID: 16404033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic soft tissue deformation strategies for real time surgery simulation.
    Shen Y; Zhou X; Zhang N; Tamma K; Sweet R
    Stud Health Technol Inform; 2008; 132():457-9. PubMed ID: 18391343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive soft tissue deformation for a virtual reality surgical trainer.
    Jerabkova L; Wolter TP; Pallua N; Kuhlen T
    Stud Health Technol Inform; 2005; 111():219-22. PubMed ID: 15718731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A haptic model of a bone-cutting burr.
    Agus M; Giachetti A; Gobbetti E; Zanetti G; Zorcolo A; Picasso B; Sellari Franceschini S
    Stud Health Technol Inform; 2003; 94():4-10. PubMed ID: 15455854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An advanced hybrid cutting method with an improved state machine for surgical simulation.
    Zhang J; Gu L; Li X; Fang M
    Comput Med Imaging Graph; 2009 Jan; 33(1):63-71. PubMed ID: 19058949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A virtual training simulator for learning cataract surgery with phacoemulsification.
    Choi KS; Soo S; Chung FL
    Comput Biol Med; 2009 Nov; 39(11):1020-31. PubMed ID: 19720372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy and cost-effectiveness of a high-powered parallel waterjet for wound debridement.
    Granick MS; Posnett J; Jacoby M; Noruthun S; Ganchi PA; Datiashvili RO
    Wound Repair Regen; 2006; 14(4):394-7. PubMed ID: 16939565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle bending in a VR-puncture training system using a 6DOF haptic device.
    Färber M; Dahmke T; Bohn CA; Handels H
    Stud Health Technol Inform; 2009; 142():91-3. PubMed ID: 19377121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.