These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16404504)

  • 1. Segmenting fluid effect on PCR reactions in microfluidic platforms.
    Walsh EJ; King C; Grimes R; Gonzalez A
    Biomed Microdevices; 2005 Dec; 7(4):269-72. PubMed ID: 16404504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR.
    Walsh EJ; King C; Grimes R; Gonzalez A
    Biomed Microdevices; 2006 Mar; 8(1):59-64. PubMed ID: 16491332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic handling of PCR solution and DNA amplification on a reaction chamber array biochip.
    Gong H; Ramalingam N; Chen L; Che J; Wang Q; Wang Y; Yang X; Yap PH; Neo CH
    Biomed Microdevices; 2006 Jun; 8(2):167-76. PubMed ID: 16688576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes.
    Liu CJ; Lien KY; Weng CY; Shin JW; Chang TY; Lee GB
    Biomed Microdevices; 2009 Apr; 11(2):339-50. PubMed ID: 19034667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications.
    Dorfman KD; Chabert M; Codarbox JH; Rousseau G; de Cremoux P; Viovy JL
    Anal Chem; 2005 Jun; 77(11):3700-4. PubMed ID: 15924408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micro circulating PCR chip using a suction-type membrane for fluidic transport.
    Chien LJ; Wang JH; Hsieh TM; Chen PH; Chen PJ; Lee DS; Luo CH; Lee GB
    Biomed Microdevices; 2009 Apr; 11(2):359-67. PubMed ID: 18975094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-actuated, thermo-responsive hydrogel valves for lab on a chip.
    Wang J; Chen Z; Mauk M; Hong KS; Li M; Yang S; Bau HH
    Biomed Microdevices; 2005 Dec; 7(4):313-22. PubMed ID: 16404509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a blood plasma separation system by biomarker detection.
    Kersaudy-Kerhoas M; Kavanagh DM; Dhariwal RS; Campbell CJ; Desmulliez MP
    Lab Chip; 2010 Jun; 10(12):1587-95. PubMed ID: 20358050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofluidics: a fork in the nano-road.
    Austin R
    Nat Nanotechnol; 2007 Feb; 2(2):79-80. PubMed ID: 18654220
    [No Abstract]   [Full Text] [Related]  

  • 11. Nucleic acid amplification of individual molecules in a microfluidic device.
    Dettloff R; Yang E; Rulison A; Chow A; Farinas J
    Anal Chem; 2008 Jun; 80(11):4208-13. PubMed ID: 18459739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. World-to-chip microfluidic interface with built-in valves for multichamber chip-based PCR assays.
    Oh KW; Park C; Namkoong K; Kim J; Ock KS; Kim S; Kim YA; Cho YK; Ko C
    Lab Chip; 2005 Aug; 5(8):845-50. PubMed ID: 16027935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets.
    Schaerli Y; Wootton RC; Robinson T; Stein V; Dunsby C; Neil MA; French PM; Demello AJ; Abell C; Hollfelder F
    Anal Chem; 2009 Jan; 81(1):302-6. PubMed ID: 19055421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations.
    Hashimoto M; Barany F; Xu F; Soper SA
    Analyst; 2007 Sep; 132(9):913-21. PubMed ID: 17710267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporous AlO(x) membrane.
    Kim J; Gale BK
    Lab Chip; 2008 Sep; 8(9):1516-23. PubMed ID: 18818807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification.
    Lee NY; Yamada M; Seki M
    Anal Bioanal Chem; 2005 Nov; 383(5):776-82. PubMed ID: 16172879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated two-step gene synthesis in a microfluidic device.
    Huang MC; Ye H; Kuan YK; Li MH; Ying JY
    Lab Chip; 2009 Jan; 9(2):276-85. PubMed ID: 19107285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substrate thermal resistance on space-domain microchannel fluorescent melting curve analysis.
    Kinahan DJ; Dalton TM; Davies MR
    Biomed Microdevices; 2009 Aug; 11(4):747-54. PubMed ID: 19259825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A streamlined protocol for emulsion polymerase chain reaction and subsequent purification.
    Schütze T; Rubelt F; Repkow J; Greiner N; Erdmann VA; Lehrach H; Konthur Z; Glökler J
    Anal Biochem; 2011 Mar; 410(1):155-7. PubMed ID: 21111698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.