BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 1640507)

  • 1. Transient, cyclic changes in mouse visual cell gene products during the light-dark cycle.
    McGinnis JF; Whelan JP; Donoso LA
    J Neurosci Res; 1992 Mar; 31(3):584-90. PubMed ID: 1640507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrestin mRNA expression, biosynthesis, and localization in degenerating photoreceptors of mutant rds mice retinas.
    Nir I; Agarwal N
    J Comp Neurol; 1991 Jun; 308(1):1-10. PubMed ID: 1874976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced changes in S-antigen (arrestin) localization in retinal photoreceptors: differences between rods and cones and defective process in RCS rat retinal dystrophy.
    Mirshahi M; Thillaye B; Tarraf M; de Kozak Y; Faure JP
    Eur J Cell Biol; 1994 Feb; 63(1):61-7. PubMed ID: 8005106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythm and light regulate opsin mRNA in rod photoreceptors.
    Korenbrot JI; Fernald RD
    Nature; 1989 Feb; 337(6206):454-7. PubMed ID: 2521689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent regulation of the transcriptional activity of the mammalian gene for arrestin.
    McGinnis JF; Austin BJ; Stepanik PL; Lerious V
    J Neurosci Res; 1994 Jul; 38(4):479-82. PubMed ID: 7932878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunolocalization of 48K in rod photoreceptors. Light and ATP increase OS labeling.
    Mangini NJ; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1988 Aug; 29(8):1221-34. PubMed ID: 3138199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural analysis of arrestin distribution in mouse photoreceptors during dark/light cycle.
    Nir I; Ransom N
    Exp Eye Res; 1993 Sep; 57(3):307-18. PubMed ID: 8224018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix.
    LaVail MM; White MP; Gorrin GM; Yasumura D; Porrello KV; Mullen RJ
    J Comp Neurol; 1993 Jul; 333(2):168-81. PubMed ID: 7688384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic fibroblast growth factor in retinal development: differential levels of bFGF expression and content in normal and retinal degeneration (rd) mutant mice.
    Gao H; Hollyfield JG
    Dev Biol; 1995 May; 169(1):168-84. PubMed ID: 7750636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of retinal "48K" (S-antigen) by electron microscopy.
    Mangini NJ; Pepperberg DR
    Jpn J Ophthalmol; 1987; 31(2):207-17. PubMed ID: 3118084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light deprivation profoundly affects gene expression of interphotoreceptor retinoid-binding protein in the mouse eye.
    Kutty G; Duncan T; Nickerson JM; Si JS; Van Veen T; Chader GJ; Wiggert B
    Exp Eye Res; 1994 Jan; 58(1):65-75. PubMed ID: 8157102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of functional photoreceptor phenotype by exogenous Crx expression in mouse retinal stem cells.
    Jomary C; Jones SE
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):429-37. PubMed ID: 18172122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Egr-1, VIP, and Shh mRNA and Egr-1 protein in the mouse retina by light and image quality.
    Brand C; Burkhardt E; Schaeffel F; Choi JW; Feldkaemper MP
    Mol Vis; 2005 Apr; 11():309-20. PubMed ID: 15889015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin promoter-EGFP fusion transgene expression in photoreceptor neurons of retina and pineal complex in mice.
    Ichsan AM; Kato I; Yoshida T; Takasawa K; Hayasaka S; Hiraga K
    Neurosci Lett; 2005 May; 379(2):138-43. PubMed ID: 15823431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redistribution of insoluble interphotoreceptor matrix components during photoreceptor differentiation in the mouse retina.
    Mieziewska K; Szél A; Van Veen T; Aguirre GD; Philp N
    J Comp Neurol; 1994 Jul; 345(1):115-24. PubMed ID: 8089273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal light damage in rats exposed to intermittent light. Comparison with continuous light exposure.
    Organisciak DT; Jiang YL; Wang HM; Pickford M; Blanks JC
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):795-805. PubMed ID: 2722438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The localization of guanylyl cyclase-activating proteins in the mammalian retina.
    Cuenca N; Lopez S; Howes K; Kolb H
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1243-50. PubMed ID: 9620085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A diurnal rhythm in opsin content of Rana pipiens rod inner segments.
    Bird AC; Flannery JG; Bok D
    Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1028-39. PubMed ID: 2971023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fetal topography of bovine rhodopsin mRNA suggests retinotopographically determined gene expression.
    Timmers AM; Wintjes ET; Hauswirth WW
    Invest Ophthalmol Vis Sci; 1995 Sep; 36(10):2008-19. PubMed ID: 7544781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.