These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 16405312)

  • 1. Modulation of fragmental charge transfer via hydrogen bonds. Direct measurement of electronic contributions.
    Yerushalmi R; Brandis A; Rosenbach-Belkin V; Baldridge KK; Scherz A
    J Phys Chem A; 2006 Jan; 110(2):412-21. PubMed ID: 16405312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition.
    Sarkhel S; Desiraju GR
    Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of genistein to the estrogen receptor based on an experimental electron density study.
    Yearley EJ; Zhurova EA; Zhurov VV; Pinkerton AA
    J Am Chem Soc; 2007 Dec; 129(48):15013-21. PubMed ID: 17994745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes.
    Varadwaj PR; Cukrowski I; Marques HM
    J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects.
    Levina VA; Filippov OA; Gutsul EI; Belkova NV; Epstein LM; Lledos A; Shubina ES
    J Am Chem Soc; 2010 Aug; 132(32):11234-46. PubMed ID: 20698690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases.
    Sponer J; Leszczynski J; Hobza P
    Biopolymers; 2001-2002; 61(1):3-31. PubMed ID: 11891626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses.
    Ziółkowski M; Grabowski SJ; Leszczynski J
    J Phys Chem A; 2006 May; 110(20):6514-21. PubMed ID: 16706409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct experimental evaluation of charge scheme performance by a molecular charge-meter.
    Yerushalmi R; Scherz A; Baldridge KK
    J Am Chem Soc; 2004 May; 126(18):5897-905. PubMed ID: 15125682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-X...H contacts in biomolecular systems: how they contribute to protein-ligand binding affinity.
    Lu Y; Wang Y; Xu Z; Yan X; Luo X; Jiang H; Zhu W
    J Phys Chem B; 2009 Sep; 113(37):12615-21. PubMed ID: 19708644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and evaluation of hydrogen bond strength in nucleic acid base pairs.
    Mohajeri A; Nobandegani FF
    J Phys Chem A; 2008 Jan; 112(2):281-95. PubMed ID: 18085756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye-tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining.
    Dapson RW
    Biotech Histochem; 2005; 80(2):49-72. PubMed ID: 16195171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A perspective of biological supramolecular electron transfer.
    Ramasarma T
    Indian J Biochem Biophys; 1999 Dec; 36(6):379-97. PubMed ID: 10844992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study.
    Panigrahi SK
    Amino Acids; 2008 May; 34(4):617-33. PubMed ID: 18180869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong and weak hydrogen bonds in the protein-ligand interface.
    Panigrahi SK; Desiraju GR
    Proteins; 2007 Apr; 67(1):128-141. PubMed ID: 17206656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent alkynylplatinum(II) complexes of 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine-type ligands with ready tunability of the nature of the emissive states by solvent and electronic property modulation.
    Tam AY; Lam WH; Wong KM; Zhu N; Yam VW
    Chemistry; 2008; 14(15):4562-76. PubMed ID: 18393346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.