These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 16405428)
21. Characterization of non-covalent oligomers of proteins treated with hypochlorous acid. Chapman AL; Winterbourn CC; Brennan SO; Jordan TW; Kettle AJ Biochem J; 2003 Oct; 375(Pt 1):33-40. PubMed ID: 12852783 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of nuclear translocation of nuclear factor-kappaB despite lack of functional IkappaBalpha protein overcomes multiple defects in apoptosis signaling in human B-cell malignancies. Thomas RK; Sos ML; Zander T; Mani O; Popov A; Berenbrinker D; Smola-Hess S; Schultze JL; Wolf J Clin Cancer Res; 2005 Nov; 11(22):8186-94. PubMed ID: 16299251 [TBL] [Abstract][Full Text] [Related]
23. Taurine chloramine: a possible oxidant reservoir. Ogino T; Than TA; Hosako M; Ozaki M; Omori M; Okada S Adv Exp Med Biol; 2009; 643():451-61. PubMed ID: 19239177 [TBL] [Abstract][Full Text] [Related]
24. Monochloramine potently inhibits arachidonic acid metabolism in rat platelets. Fujimoto Y; Ikeda M; Sakuma S Biochem Biophys Res Commun; 2006 May; 344(1):140-5. PubMed ID: 16615995 [TBL] [Abstract][Full Text] [Related]
25. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Hawkins CL; Davies MJ Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):539-48. PubMed ID: 10333500 [TBL] [Abstract][Full Text] [Related]
26. IκBα glutathionylation and reduced histone H3 phosphorylation inhibit eotaxin and RANTES. Seidel P; Roth M; Ge Q; Merfort I; S'ng CT; Ammit AJ Eur Respir J; 2011 Dec; 38(6):1444-52. PubMed ID: 21719482 [TBL] [Abstract][Full Text] [Related]
27. Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation. Roussel RR; Barchowsky A Arch Biochem Biophys; 2000 May; 377(1):204-12. PubMed ID: 10775461 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of tubulin polymerization by hypochlorous acid and chloramines. Landino LM; Hagedorn TD; Kim SB; Hogan KM Free Radic Biol Med; 2011 Apr; 50(8):1000-8. PubMed ID: 21256958 [TBL] [Abstract][Full Text] [Related]
29. Oxidation of NADH by chloramines and chloramides and its activation by iodide and by tertiary amines. Prütz WA; Kissner R; Koppenol WH Arch Biochem Biophys; 2001 Sep; 393(2):297-307. PubMed ID: 11556817 [TBL] [Abstract][Full Text] [Related]
30. Effects of hypochlorous acid and chloramines on vascular resistance, cell integrity, and biliary glutathione disulfide in the perfused rat liver: modulation by glutathione. Bilzer M; Lauterburg BH J Hepatol; 1991 Jul; 13(1):84-9. PubMed ID: 1655871 [TBL] [Abstract][Full Text] [Related]
31. Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat kidney epithelial cells: implications for mercury-induced nephrotoxicity. Dieguez-Acuña FJ; Ellis ME; Kushleika J; Woods JS Toxicol Appl Pharmacol; 2001 Jun; 173(3):176-87. PubMed ID: 11437639 [TBL] [Abstract][Full Text] [Related]
32. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Summers FA; Morgan PE; Davies MJ; Hawkins CL Chem Res Toxicol; 2008 Sep; 21(9):1832-40. PubMed ID: 18698849 [TBL] [Abstract][Full Text] [Related]
33. Hydrogen peroxide-induced apoptosis of HL-60 human leukemia cells is mediated by the oxidants hypochlorous acid and chloramines. Wagner BA; Britigan BE; Reszka KJ; McCormick ML; Burns CP Arch Biochem Biophys; 2002 May; 401(2):223-34. PubMed ID: 12054473 [TBL] [Abstract][Full Text] [Related]
34. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
35. A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. Shumway SD; Miyamoto S Biochem J; 2004 May; 380(Pt 1):173-80. PubMed ID: 14763901 [TBL] [Abstract][Full Text] [Related]
36. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Lloyd MM; Grima MA; Rayner BS; Hadfield KA; Davies MJ; Hawkins CL Free Radic Biol Med; 2013 Dec; 65():1352-1362. PubMed ID: 24120969 [TBL] [Abstract][Full Text] [Related]
37. Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines. Ogino T; Packer L; Maguire JJ Free Radic Biol Med; 1997; 23(3):445-52. PubMed ID: 9214581 [TBL] [Abstract][Full Text] [Related]
38. Apoptosis triggered by phagocytosis-related oxidative stress through FLIPS down-regulation and JNK activation. Kanayama A; Miyamoto Y J Leukoc Biol; 2007 Nov; 82(5):1344-52. PubMed ID: 17709401 [TBL] [Abstract][Full Text] [Related]
39. Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. Jung Y; Kim H; Min SH; Rhee SG; Jeong W J Biol Chem; 2008 Aug; 283(35):23863-71. PubMed ID: 18579519 [TBL] [Abstract][Full Text] [Related]
40. Taurine: new implications for an old amino acid. Schuller-Levis GB; Park E FEMS Microbiol Lett; 2003 Sep; 226(2):195-202. PubMed ID: 14553911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]