These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16405582)
1. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. Schmitt T; Hewitt GM; Müller P J Evol Biol; 2006 Jan; 19(1):108-13. PubMed ID: 16405582 [TBL] [Abstract][Full Text] [Related]
3. Molecular evidence for glacial refugia of mountain plants in the European Alps. Schönswetter P; Stehlik I; Holderegger R; Tribsch A Mol Ecol; 2005 Oct; 14(11):3547-55. PubMed ID: 16156822 [TBL] [Abstract][Full Text] [Related]
4. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Schmitt T; Haubrich K Mol Ecol; 2008 May; 17(9):2194-207. PubMed ID: 18266631 [TBL] [Abstract][Full Text] [Related]
5. Genetic differentiation of the marbled white butterfly, Melanargia galathea, accounts for glacial distribution patterns and postglacial range expansion in southeastern Europe. Schmitt T; Habel JC; Zimmermann M; Müller P Mol Ecol; 2006 Jun; 15(7):1889-901. PubMed ID: 16689905 [TBL] [Abstract][Full Text] [Related]
6. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Ronikier M; Cieślak E; Korbecka G Mol Ecol; 2008 Apr; 17(7):1763-75. PubMed ID: 18284572 [TBL] [Abstract][Full Text] [Related]
7. Effects of recent and past climatic shifts on the genetic structure of the high mountain yellow-spotted ringlet butterfly Erebia manto (Lepidoptera, Satyrinae): a conservation problem. Schmitt T; Habel JC; Rödder D; Louy D Glob Chang Biol; 2014 Jul; 20(7):2045-61. PubMed ID: 24753365 [TBL] [Abstract][Full Text] [Related]
8. Alpine biogeography of Parnassian butterflies during Quaternary climate cycles in North America. Schoville SD; Roderick GK Mol Ecol; 2009 Aug; 18(16):3471-85. PubMed ID: 19659481 [TBL] [Abstract][Full Text] [Related]
9. The importance of time scale and multiple refugia: incipient speciation and admixture of lineages in the butterfly Erebia triaria (Nymphalidae). Vila M; Vidal-Romaní JR; Björklund M Mol Phylogenet Evol; 2005 Aug; 36(2):249-60. PubMed ID: 15955508 [TBL] [Abstract][Full Text] [Related]
10. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Afzal-Rafii Z; Dodd RS Mol Ecol; 2007 Feb; 16(4):723-36. PubMed ID: 17284207 [TBL] [Abstract][Full Text] [Related]
11. Multiple glacial refugia and complex postglacial range shifts of the obligatory woodland plant Polygonatum verticillatum (Convallariaceae). Kramp K; Huck S; Niketić M; Tomović G; Schmitt T Plant Biol (Stuttg); 2009 May; 11(3):392-404. PubMed ID: 19470110 [TBL] [Abstract][Full Text] [Related]
12. Out of the alps: the biogeography of a disjunctly distributed mountain butterfly, the almond-eyed ringlet Erebia alberganus (Lepidoptera, Satyrinae). Louy D; Habel JC; Ulrich W; Schmitt T J Hered; 2014; 105(1):28-38. PubMed ID: 24286723 [TBL] [Abstract][Full Text] [Related]
13. Divergence and diversity: lessons from an arctic-alpine distribution (Pardosa saltuaria group, Lycosidae). Muster C; Berendonk TU Mol Ecol; 2006 Sep; 15(10):2921-33. PubMed ID: 16911211 [TBL] [Abstract][Full Text] [Related]
14. Using coalescent simulations to test the impact of quaternary climate cycles on divergence in an alpine plant-insect association. DeChaine EG; Martin AP Evolution; 2006 May; 60(5):1004-13. PubMed ID: 16817540 [TBL] [Abstract][Full Text] [Related]
15. When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Galbreath KE; Hafner DJ; Zamudio KR Evolution; 2009 Nov; 63(11):2848-63. PubMed ID: 19663994 [TBL] [Abstract][Full Text] [Related]
16. Arctic-alpine distributions--metapopulations on a continental scale? Muster C; Maddison WP; Uhlmann S; Berendonk TU; Vogler AP Am Nat; 2009 Mar; 173(3):313-26. PubMed ID: 19199524 [TBL] [Abstract][Full Text] [Related]
17. Phylogeographic analyses and paleodistribution modeling indicate pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Jakob SS; Martinez-Meyer E; Blattner FR Mol Biol Evol; 2009 Apr; 26(4):907-23. PubMed ID: 19168565 [TBL] [Abstract][Full Text] [Related]
18. Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Puşcaş M; Choler P; Tribsch A; Gielly L; Rioux D; Gaudeul M; Taberlet P Mol Ecol; 2008 May; 17(10):2417-29. PubMed ID: 18422934 [TBL] [Abstract][Full Text] [Related]
19. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Ehrich D; Gaudeul M; Assefa A; Koch MA; Mummenhoff K; Nemomissa S; ; Brochmann C Mol Ecol; 2007 Jun; 16(12):2542-59. PubMed ID: 17561912 [TBL] [Abstract][Full Text] [Related]
20. Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Alsos IG; Engelskjøn T; Gielly L; Taberlet P; Brochmann C Mol Ecol; 2005 Aug; 14(9):2739-53. PubMed ID: 16029475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]