These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 16405699)
1. Growth-inhibiting effects of concentrations of fusaric acid on the growth of Bacillus mojavensis and other biocontrol Bacillus species. Bacon CW; Hinton DM; Hinton A J Appl Microbiol; 2006; 100(1):185-94. PubMed ID: 16405699 [TBL] [Abstract][Full Text] [Related]
2. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis. Bacon CW; Hinton DM Can J Microbiol; 2011 Jun; 57(6):485-92. PubMed ID: 21635192 [TBL] [Abstract][Full Text] [Related]
3. Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. Son SW; Kim HY; Choi GJ; Lim HK; Jang KS; Lee SO; Lee S; Sung ND; Kim JC J Appl Microbiol; 2008 Mar; 104(3):692-8. PubMed ID: 17927749 [TBL] [Abstract][Full Text] [Related]
4. Isolation and characterization of leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Snook ME; Mitchell T; Hinton DM; Bacon CW J Agric Food Chem; 2009 May; 57(10):4287-92. PubMed ID: 19371139 [TBL] [Abstract][Full Text] [Related]
5. Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Landa BB; Cachinero-Díaz JM; Lemanceau P; Jiménez-Díaz RM; Alabouvette C Can J Microbiol; 2002 Nov; 48(11):971-85. PubMed ID: 12556125 [TBL] [Abstract][Full Text] [Related]
6. Impact of two bacterial biocontrol agents on bacterial and fungal culturable groups associated with the roots of field-grown maize. Pereira P; Nesci A; Etcheverry M Lett Appl Microbiol; 2009 Apr; 48(4):493-9. PubMed ID: 19292823 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Cavaglieri L; Orlando J; Rodríguez MI; Chulze S; Etcheverry M Res Microbiol; 2005; 156(5-6):748-54. PubMed ID: 15950130 [TBL] [Abstract][Full Text] [Related]
8. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Bevivino A; Peggion V; Chiarini L; Tabacchioni S; Cantale C; Dalmastri C Res Microbiol; 2005 Dec; 156(10):974-83. PubMed ID: 16085398 [TBL] [Abstract][Full Text] [Related]
9. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Schouten A; van den Berg G; Edel-Hermann V; Steinberg C; Gautheron N; Alabouvette C; de Vos CH; Lemanceau P; Raaijmakers JM Mol Plant Microbe Interact; 2004 Nov; 17(11):1201-11. PubMed ID: 15559985 [TBL] [Abstract][Full Text] [Related]
10. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Rath M; Mitchell TR; Gold SE Microbiol Res; 2018 Mar; 208():76-84. PubMed ID: 29551214 [TBL] [Abstract][Full Text] [Related]
11. Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against Guo Q; Li S; Dong L; Su Z; Wang P; Liu X; Ma P Toxins (Basel); 2023 Jun; 15(6):. PubMed ID: 37368682 [TBL] [Abstract][Full Text] [Related]
12. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. Lee K; Pan JJ; May G FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816 [TBL] [Abstract][Full Text] [Related]
13. HPLC analysis of fusaric acid, 9,10-dehydrofusaric acid and their methyl esters, toxic metabolites from weed pathogenic Fusarium species. Amalfitano C; Pengue R; Andolfi A; Vurro M; Zonno MC; Evidente A Phytochem Anal; 2002; 13(5):277-82. PubMed ID: 12918873 [TBL] [Abstract][Full Text] [Related]
14. Environmental factors modify carbon nutritional patterns and niche overlap between Aspergillus flavus and Fusarium verticillioides strains from maize. Giorni P; Magan N; Battilani P Int J Food Microbiol; 2009 Apr; 130(3):213-8. PubMed ID: 19239978 [TBL] [Abstract][Full Text] [Related]
15. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
16. Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. Apetroaie-Constantin C; Mikkola R; Andersson MA; Teplova V; Suominen I; Johansson T; Salkinoja-Salonen M J Appl Microbiol; 2009 Jun; 106(6):1976-85. PubMed ID: 19228254 [TBL] [Abstract][Full Text] [Related]
17. Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition. Jamali F; Sharifi-Tehrani A; Okhovvat M; Zakeri Z; Saberi-Riseh R Commun Agric Appl Biol Sci; 2004; 69(4):649-51. PubMed ID: 15756852 [TBL] [Abstract][Full Text] [Related]
18. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
19. Zinc Improves Biocontrol of Fusarium Crown and Root Rot of Tomato by Pseudomonas fluorescens and Represses the Production of Pathogen Metabolites Inhibitory to Bacterial Antibiotic Biosynthesis. Duffy BK; Défago G Phytopathology; 1997 Dec; 87(12):1250-7. PubMed ID: 18945026 [TBL] [Abstract][Full Text] [Related]
20. Natural variation of ascospore and conidial germination by Fusarium verticillioides and other Fusarium species. Glenn AE Mycol Res; 2006 Feb; 110(Pt 2):211-9. PubMed ID: 16413990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]