BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16405900)

  • 21. Transcriptome and Metabolomics Integrated Analysis Reveals Terpene Synthesis Genes Controlling Linalool Synthesis in Grape Berries.
    Liu S; Shan B; Zhou X; Gao W; Liu Y; Zhu B; Sun L
    J Agric Food Chem; 2022 Jul; 70(29):9084-9094. PubMed ID: 35820041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L.
    Ruberto G; Renda A; Amico V; Tringali C
    Bioresour Technol; 2008 Jan; 99(2):260-8. PubMed ID: 17321134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantiomeric distribution of major chiral volatile organic compounds in juniper-flavored distillates.
    Pažitná A; Spánik I
    J Sep Sci; 2014 Feb; 37(4):398-403. PubMed ID: 24339334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multidimensional gas chromatography-mass spectrometry determination of 3-alkyl-2-methoxypyrazines in wine and must. A comparison of solid-phase extraction and headspace solid-phase extraction methods.
    Culleré L; Escudero A; Campo E; Cacho J; Ferreira V
    J Chromatogr A; 2009 May; 1216(18):4040-5. PubMed ID: 19296957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and differentiation of monovarietal grape pomace distillate from native varieties of Galicia.
    López-Vázquez C; Bollaín MH; Moser S; Orriols I
    J Agric Food Chem; 2010 Sep; 58(17):9657-65. PubMed ID: 20707339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ripening grape berries remain hydraulically connected to the shoot.
    Keller M; Smith JP; Bondada BR
    J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: Authenticity control of Australian tea tree oil.
    Wong YF; West RN; Chin ST; Marriott PJ
    J Chromatogr A; 2015 Aug; 1406():307-15. PubMed ID: 26138602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ripening and genotype control stilbene accumulation in healthy grapes.
    Gatto P; Vrhovsek U; Muth J; Segala C; Romualdi C; Fontana P; Pruefer D; Stefanini M; Moser C; Mattivi F; Velasco R
    J Agric Food Chem; 2008 Dec; 56(24):11773-85. PubMed ID: 19032022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogenetic studies in Syringa vulgaris L.: bioconversion of (18)O(2H)-labeled precursors into lilac aldehydes and lilac alcohols.
    Burkhardt D; Mosandl A
    J Agric Food Chem; 2003 Dec; 51(25):7391-5. PubMed ID: 14640589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereoselective dissipation of epoxiconazole in grape (Vitis vinifera cv. Kyoho) and soil under field conditions.
    Liang H; Qiu J; Li L; Li W; Zhou Z; Liu F; Qiu L
    Chemosphere; 2012 May; 87(8):982-7. PubMed ID: 22414382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis for chloroanisoles and chlorophenols in cork by stir bar sorptive extraction and gas chromatography-mass spectrometry.
    Callejon RM; Troncoso AM; Morales ML
    Talanta; 2007 Mar; 71(5):2092-7. PubMed ID: 19071569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: indication of biological epoxidation.
    Meesters RJ; Duisken M; Hollender J
    Xenobiotica; 2007 Jun; 37(6):604-17. PubMed ID: 17614007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF.
    Giribaldi M; Perugini I; Sauvage FX; Schubert A
    Proteomics; 2007 Sep; 7(17):3154-70. PubMed ID: 17683049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grape berry plasma membrane proteome analysis and its differential expression during ripening.
    Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S
    J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of stir bar sorptive extraction and solid-phase microextraction to determine halophenols and haloanisoles by gas chromatography-ion trap tandem mass spectrometry.
    Maggi L; Zalacain A; Mazzoleni V; Alonso GL; Salinas MR
    Talanta; 2008 May; 75(3):753-9. PubMed ID: 18585142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry.
    Vichi S; Guadayol JM; Caixach J; López-Tamames E; Buxaderas S
    J Chromatogr A; 2006 Aug; 1125(1):117-23. PubMed ID: 16756984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry for trace analysis of methylmercury and mercury(II) in water sample.
    Ito R; Kawaguchi M; Sakui N; Okanouchi N; Saito K; Seto Y; Nakazawa H
    Talanta; 2009 Feb; 77(4):1295-8. PubMed ID: 19084638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries.
    Bindon KA; Dry PR; Loveys BR
    J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the diastereoisomers of the cysteinylated aroma precursor of 3-sulfanylhexanol in Vitis vinifera grape must by gas chromatography coupled with ion trap tandem mass spectrometry.
    Thibon C; Shinkaruk S; Tominaga T; Bennetau B; Dubourdieu D
    J Chromatogr A; 2008 Mar; 1183(1-2):150-7. PubMed ID: 18249409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass spectrometry in the analysis of grape and wine proteins.
    Flamini R; De Rosso M
    Expert Rev Proteomics; 2006 Jun; 3(3):321-31. PubMed ID: 16771704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.