BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16405931)

  • 1. Involvement of lipid rafts and caveolae in cardiac ion channel function.
    Maguy A; Hebert TE; Nattel S
    Cardiovasc Res; 2006 Mar; 69(4):798-807. PubMed ID: 16405931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of ion channels to lipid Raft domains within the cardiovascular system.
    O'Connell KM; Martens JR; Tamkun MM
    Trends Cardiovasc Med; 2004 Feb; 14(2):37-42. PubMed ID: 15030787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel subunit expression changes in cardiac Purkinje fibers: a potential role in conduction abnormalities associated with congestive heart failure.
    Maguy A; Le Bouter S; Comtois P; Chartier D; Villeneuve L; Wakili R; Nishida K; Nattel S
    Circ Res; 2009 May; 104(9):1113-22. PubMed ID: 19359601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for the simultaneous analysis of mRNA levels of multiple cardiac ion channels with a multi-probe RNase protection assay.
    Iwasaki YK; Yamashita T; Sekiguchi A; Hatano S; Sagara K; Iinuma H; Fu LT; Kobayashi Y; Katoh T; Takano T
    Europace; 2006 Nov; 8(11):1011-5. PubMed ID: 17005589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular signaling through cholesterol-rich domains: implications in hypertension.
    Callera GE; Montezano AC; Yogi A; Tostes RC; Touyz RM
    Curr Opin Nephrol Hypertens; 2007 Mar; 16(2):90-104. PubMed ID: 17293683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolae, lipid rafts, and vascular disease.
    Li XA; Everson WV; Smart EJ
    Trends Cardiovasc Med; 2005 Apr; 15(3):92-6. PubMed ID: 16039968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts.
    Martens JR; O'Connell K; Tamkun M
    Trends Pharmacol Sci; 2004 Jan; 25(1):16-21. PubMed ID: 14723974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation.
    Poisson C; Rollin S; Véronneau S; Bousquet SM; Larrivée JF; Le Gouill C; Boulay G; Stankova J; Rola-Pleszczynski M
    J Immunol; 2009 Aug; 183(4):2747-57. PubMed ID: 19620302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid microdomains and k(+) channel compartmentation: detergent and non-detergent-based methods for the isolation and characterisation of cholesterol-enriched lipid rafts.
    Sampson LJ; Dart C
    Methods Mol Biol; 2008; 491():91-101. PubMed ID: 18998086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glut-4 is translocated to both caveolae and non-caveolar lipid rafts, but is partially internalized through caveolae in insulin-stimulated adipocytes.
    Yuan T; Hong S; Yao Y; Liao K
    Cell Res; 2007 Sep; 17(9):772-82. PubMed ID: 17846641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of syntaxin 1A with the N-terminus of Kv4.2 modulates channel surface expression and gating.
    Yamakawa T; Saith S; Li Y; Gao X; Gaisano HY; Tsushima RG
    Biochemistry; 2007 Sep; 46(38):10942-9. PubMed ID: 17725325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Kv1.5 targeting to membrane surface microdomains.
    Martínez-Mármol R; Villalonga N; Solé L; Vicente R; Tamkun MM; Soler C; Felipe A
    J Cell Physiol; 2008 Dec; 217(3):667-73. PubMed ID: 18668522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes.
    Abi-Char J; Maguy A; Coulombe A; Balse E; Ratajczak P; Samuel JL; Nattel S; Hatem SN
    J Physiol; 2007 Aug; 582(Pt 3):1205-17. PubMed ID: 17525113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation.
    Carter S; Colyer J; Sitsapesan R
    Circ Res; 2006 Jun; 98(12):1506-13. PubMed ID: 16709901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development.
    Harrell MD; Harbi S; Hoffman JF; Zavadil J; Coetzee WA
    Physiol Genomics; 2007 Feb; 28(3):273-83. PubMed ID: 16985003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raft association and lipid droplet targeting of flotillins are independent of caveolin.
    Rajendran L; Le Lay S; Illges H
    Biol Chem; 2007 Mar; 388(3):307-14. PubMed ID: 17338638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glycosylation state of Kv1.2 potassium channels affects trafficking, gating, and simulated action potentials.
    Watanabe I; Zhu J; Sutachan JJ; Gottschalk A; Recio-Pinto E; Thornhill WB
    Brain Res; 2007 May; 1144():1-18. PubMed ID: 17324383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling K(ATP) channel gating and its regulation.
    Proks P; Ashcroft FM
    Prog Biophys Mol Biol; 2009 Jan; 99(1):7-19. PubMed ID: 18983870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant role of lipid rafts L-type calcium channel in activity-dependent potentiation of large dense-core vesicle exocytosis.
    Park Y; Kim KT
    J Neurochem; 2009 Jul; 110(2):520-9. PubMed ID: 19457106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.