BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16405964)

  • 1. Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride.
    Ahmad Z; Senior AE
    FEBS Lett; 2006 Jan; 580(2):517-20. PubMed ID: 16405964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F
    Lapashina AS; Shugaeva TE; Berezina KM; Kholina TD; Feniouk BA
    Biochemistry (Mosc); 2019 Apr; 84(4):407-415. PubMed ID: 31228932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does F1-ATPase have a catalytic site that preferentially binds MgADP?
    Mao HZ; Gray WD; Weber J
    FEBS Lett; 2006 Jul; 580(17):4131-5. PubMed ID: 16828083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional importance of αAsp-350 in the catalytic sites of Escherichia coli ATP synthase.
    Raheem S; Steiner A; Ahmad Z
    Arch Biochem Biophys; 2019 Sep; 672():108050. PubMed ID: 31330132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase.
    Azim S; Ahmad Z
    Int J Biol Macromol; 2018 Sep; 116():977-982. PubMed ID: 29782980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase.
    Futai M; Nakanishi-Matsui M; Okamoto H; Sekiya M; Nakamoto RK
    Biochim Biophys Acta; 2012 Oct; 1817(10):1711-21. PubMed ID: 22459334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of the transition state analog MgADP-fluoroaluminate to F1-ATPase.
    Nadanaciva S; Weber J; Senior AE
    J Biol Chem; 1999 Mar; 274(11):7052-8. PubMed ID: 10066761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of myosin ATPase by metal fluoride complexes.
    Park S; Ajtai K; Burghardt TP
    Biochim Biophys Acta; 1999 Feb; 1430(1):127-40. PubMed ID: 10082941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADP-Inhibition of H+-F
    Lapashina AS; Feniouk BA
    Biochemistry (Mosc); 2018 Oct; 83(10):1141-1160. PubMed ID: 30472953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of betaAsn-243 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F(1)-ATPase.
    Ahmad Z; Senior AE
    J Biol Chem; 2004 Oct; 279(44):46057-64. PubMed ID: 15322126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive.
    Milgrom YM; Duncan TM
    Biochim Biophys Acta Bioenerg; 2020 Jul; 1861(7):148189. PubMed ID: 32194063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of NBD-Cl in nucleotide-binding of the major subunit alpha and B of the motor proteins F1FO ATP synthase and A1AO ATP synthase.
    Hunke C; Tadwal VS; Manimekalai MS; Roessle M; Grüber G
    J Bioenerg Biomembr; 2010 Feb; 42(1):1-10. PubMed ID: 20082212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase.
    Lapashina AS; Prikhodko AS; Shugaeva TE; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2019 Mar; 1860(3):181-188. PubMed ID: 30528692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio.
    Cross RL; Müller V
    FEBS Lett; 2004 Oct; 576(1-2):1-4. PubMed ID: 15473999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.
    Yasuno T; Muneyuki E; Yoshida M; Kato-Yamada Y
    Biochem Biophys Res Commun; 2009 Dec; 390(2):230-4. PubMed ID: 19785990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode of inhibition of sodium azide on H+-ATPase of Escherichia coli.
    Noumi T; Maeda M; Futai M
    FEBS Lett; 1987 Mar; 213(2):381-4. PubMed ID: 2881810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching.
    Bulygin VV; Milgrom YM
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4327-31. PubMed ID: 17360523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New probes of the F1-ATPase catalytic transition state reveal that two of the three catalytic sites can assume a transition state conformation simultaneously.
    Nadanaciva S; Weber J; Senior AE
    Biochemistry; 2000 Aug; 39(31):9583-90. PubMed ID: 10924155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit.
    Boltz KW; Frasch WD
    Biochemistry; 2006 Sep; 45(37):11190-9. PubMed ID: 16964980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutation of the c subunit of the Escherichia coli proton-translocating ATPase that suppresses the effects of a mutant b subunit.
    Kumamoto CA; Simoni RD
    J Biol Chem; 1987 Mar; 262(7):3060-4. PubMed ID: 2880846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.