These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16405964)

  • 21. Site-directed spin-labeling of the catalytic sites yields insight into structural changes within the F0F1-ATP synthase of Escherichia coli.
    Kersten MV; Dunn SD; Wise JG; Vogel PD
    Biochemistry; 2000 Apr; 39(13):3856-60. PubMed ID: 10736187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F(1)-ATPase.
    Mitome N; Ono S; Suzuki T; Shimabukuro K; Muneyuki E; Yoshida M
    Eur J Biochem; 2002 Jan; 269(1):53-60. PubMed ID: 11784298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila.
    Miles RD; Gorrell A; Ferry JG
    J Biol Chem; 2002 Jun; 277(25):22547-52. PubMed ID: 11960978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of {alpha}-subunit VISIT-DG sequence residues Ser-347 and Gly-351 in the catalytic sites of Escherichia coli ATP synthase.
    Li W; Brudecki LE; Senior AE; Ahmad Z
    J Biol Chem; 2009 Apr; 284(16):10747-54. PubMed ID: 19240022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP.
    Dou C; Fortes PA; Allison WS
    Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase.
    Nadanaciva S; Weber J; Senior AE
    Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional importance of αIle-346 and αIle-348 in the catalytic sites of Escherichia coli ATP synthase.
    Zhao C; Syed H; Hassan SS; Singh VK; Ahmad Z
    Arch Biochem Biophys; 2016 Feb; 592():27-37. PubMed ID: 26775572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum.
    Kaim G; Wehrle F; Gerike U; Dimroth P
    Biochemistry; 1997 Jul; 36(30):9185-94. PubMed ID: 9230051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPase.
    Sekiya M; Nakamoto RK; Nakanishi-Matsui M; Futai M
    J Biol Chem; 2012 Jun; 287(27):22771-80. PubMed ID: 22582396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pause and rotation of F(1)-ATPase during catalysis.
    Hirono-Hara Y; Noji H; Nishiura M; Muneyuki E; Hara KY; Yasuda R; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13649-54. PubMed ID: 11707579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of stepping kinetics for rotary enzymes. Application to the F1-ATPase.
    Goldstein BN; Aksirov AM; Zakrjevskaya DT
    Biosystems; 2011 Apr; 104(1):9-13. PubMed ID: 21195126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme.
    Bulygin VV; Milgrom YM
    Biochemistry (Mosc); 2010 Mar; 75(3):327-35. PubMed ID: 20370611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutagenesis of residue betaArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase.
    Ahmad Z; Senior AE
    J Biol Chem; 2004 Jul; 279(30):31505-13. PubMed ID: 15150266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase.
    Li Y; Valdez NA; Mnatsakanyan N; Weber J
    Arch Biochem Biophys; 2021 Aug; 707():108899. PubMed ID: 33991499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of the hepatitis C virus helicase-associated ATPase activity by the combination of ADP, NaF, MgCl2, and poly(rU). Two ADP binding sites on the enzyme-nucleic acid complex.
    Porter DJ
    J Biol Chem; 1998 Mar; 273(13):7390-6. PubMed ID: 9516436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase.
    Amini A; Liu M; Ahmad Z
    Int J Biol Macromol; 2017 Aug; 101():153-164. PubMed ID: 28322962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Significance of αThr-349 in the catalytic sites of Escherichia coli ATP synthase.
    Ahmad Z; Winjobi M; Kabir MA
    Biochemistry; 2014 Dec; 53(47):7376-85. PubMed ID: 25375895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase.
    Bilyard T; Nakanishi-Matsui M; Steel BC; Pilizota T; Nord AL; Hosokawa H; Futai M; Berry RM
    Philos Trans R Soc Lond B Biol Sci; 2013 Feb; 368(1611):20120023. PubMed ID: 23267177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.