BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16406213)

  • 1. Detection of dideoxyosone intermediates of glycation using a monoclonal antibody: characterization of major epitope structures.
    Puttaiah S; Zhang Y; Pilch HA; Pfahler C; Oya-Ito T; Sayre LM; Nagaraj RH
    Arch Biochem Biophys; 2006 Feb; 446(2):186-96. PubMed ID: 16406213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific quantitative evaluation of the protein glycation product N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysinate by LC-(ESI)MS peptide mapping: evidence for its key role in AGE formation.
    Biemel KM; Lederer MO
    Bioconjug Chem; 2003; 14(3):619-28. PubMed ID: 12757388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate carbonyl mobility--the key process in the formation of alpha-dicarbonyl intermediates.
    Reihl O; Rothenbacher TM; Lederer MO; Schwack W
    Carbohydr Res; 2004 Jun; 339(9):1609-18. PubMed ID: 15183735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of nonenzymatic glycation of ribonuclease A leading to advanced glycation end products. Paradoxical inhibition by ribose leads to facile isolation of protein intermediate for rapid post-Amadori studies.
    Khalifah RG; Todd P; Booth AA; Yang SX; Mott JD; Hudson BG
    Biochemistry; 1996 Apr; 35(15):4645-54. PubMed ID: 8664253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose.
    Nakamura K; Nakazawa Y; Ienaga K
    Biochem Biophys Res Commun; 1997 Mar; 232(1):227-30. PubMed ID: 9125137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation of lysine-containing dipeptides.
    Mennella C; Visciano M; Napolitano A; Del Castillo MD; Fogliano V
    J Pept Sci; 2006 Apr; 12(4):291-6. PubMed ID: 16180244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional antibody against Nepsilon-(carboxymethyl)lysine (CML) shows cross-reaction to Nepsilon-(carboxyethyl)lysine (CEL): immunochemical quantification of CML with a specific antibody.
    Koito W; Araki T; Horiuchi S; Nagai R
    J Biochem; 2004 Dec; 136(6):831-7. PubMed ID: 15671494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect.
    Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J
    Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunochemical detection of N2-[1-(1-carboxy)ethyl]guanosine, an advanced glycation end product formed by the reaction of DNA and reducing sugars or L-ascorbic acid in vitro.
    Seidel W; Pischetsrieder M
    Biochim Biophys Acta; 1998 Nov; 1425(3):478-84. PubMed ID: 9838211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients.
    Niwa T; Katsuzaki T; Miyazaki S; Miyazaki T; Ishizaki Y; Hayase F; Tatemichi N; Takei Y
    J Clin Invest; 1997 Mar; 99(6):1272-80. PubMed ID: 9077536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of glycation of beta B2-crystallin by glucose and fructose.
    Zhao HR; Smith JB; Jiang XY; Abraham EC
    Biochem Biophys Res Commun; 1996 Dec; 229(1):128-33. PubMed ID: 8954094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoglobulin-G Glycation by Fructose Leads to Structural Perturbations and Drop Off in Free Lysine and Arginine Residues.
    Faisal M; Alatar AA; Ahmad S
    Protein Pept Lett; 2017; 24(3):241-244. PubMed ID: 28124608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amadori product and age formation during nonenzymatic glycosylation of bovine serum albumin in vitro.
    Sharma SD; Pandey BN; Mishra KP; Sivakami S
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):233-42. PubMed ID: 12186738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal glycation of proteins by D-glucose and D-fructose.
    Kańska U; Boratyński J
    Arch Immunol Ther Exp (Warsz); 2002; 50(1):61-6. PubMed ID: 11916310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.
    Kielmas M; Kijewska M; Stefanowicz P; Szewczuk Z
    Anal Biochem; 2012 Dec; 431(1):57-65. PubMed ID: 22964226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts".
    Richter T; Münch G; Lüth HJ; Arendt T; Kientsch-Engel R; Stahl P; Fengler D; Kuhla B
    Neurobiol Aging; 2005 Apr; 26(4):465-74. PubMed ID: 15653175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.