These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 16406625)
1. Predicting Gran alkalinity and calcium concentrations in river waters over a national scale using a novel modification to the G-BASH model. Cresser MS; Ahmed N; Smart RP; Arowolo T; Calver LJ; Chapman PJ Environ Pollut; 2006 Sep; 143(2):361-6. PubMed ID: 16406625 [TBL] [Abstract][Full Text] [Related]
2. Can sediment data be used to predict alkalinity and base cation chemistry of surface waters? Begum S; McClean CJ; Cresser MS; Breward N Sci Total Environ; 2010 Dec; 409(2):404-11. PubMed ID: 21051075 [TBL] [Abstract][Full Text] [Related]
3. A new generic approach for estimating the concentrations of down-the-drain chemicals at catchment and national scale. Keller VD; Rees HG; Fox KK; Whelan MJ Environ Pollut; 2007 Jul; 148(1):334-42. PubMed ID: 17258364 [TBL] [Abstract][Full Text] [Related]
4. A critical re-evaluation of the prediction of alkalinity and base cation chemistry from BGS sediment composition data. Begum S; McClean CJ; Cresser MS; Adnan M; Breward N Sci Total Environ; 2014 Jun; 482-483():283-93. PubMed ID: 24657578 [TBL] [Abstract][Full Text] [Related]
5. Hydrology and water quality of the headwaters of the River Severn: Stream acidity recovery and interactions with plantation forestry under an improving pollution climate. Neal C; Robinson M; Reynolds B; Neal M; Rowland P; Grant S; Norris D; Williams B; Sleep D; Lawlor A Sci Total Environ; 2010 Oct; 408(21):5035-51. PubMed ID: 20708776 [TBL] [Abstract][Full Text] [Related]
6. Simulation of future stream alkalinity under changing deposition and climate scenarios. Welsch DL; Cosby BJ; Hornberger GM Sci Total Environ; 2006 Aug; 367(2-3):800-10. PubMed ID: 16600331 [TBL] [Abstract][Full Text] [Related]
7. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
8. River sediments provide a link between catchment pressures and ecological status in a mixed land use Scottish River system. Stutter MI; Langan SJ; Demars BO Water Res; 2007 Jun; 41(12):2803-15. PubMed ID: 17448517 [TBL] [Abstract][Full Text] [Related]
9. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK. Ryan JL; Lynam P; Heal KV; Palmer SM Sci Total Environ; 2012 Nov; 439():321-31. PubMed ID: 23085669 [TBL] [Abstract][Full Text] [Related]
10. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network. Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046 [TBL] [Abstract][Full Text] [Related]
11. Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. Forsius M; Vuorenmaa J; Mannio J; Syri S Sci Total Environ; 2003 Jul; 310(1-3):121-32. PubMed ID: 12812736 [TBL] [Abstract][Full Text] [Related]
12. Modelling nitrate losses from agricultural activities on a national scale. Dunn SM; Vinten AJ; Lilly A; DeGroote J; McGechan M Water Sci Technol; 2005; 51(3-4):319-27. PubMed ID: 15850205 [TBL] [Abstract][Full Text] [Related]
13. Use of continuous water quality records for hydrograph separation and to assess short-term variability and extremes in acidity and dissolved carbon dioxide for the River Dee, Scotland. Jarvie HP; Neal C; Smart R; Owen R; Fraser D; Forbes I; Wade A Sci Total Environ; 2001 Jan; 265(1-3):85-98. PubMed ID: 11227285 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen retention in a river system and the effects of river morphology and lakes. Venohr M; Donohue I; Fogelberg S; Arheimer B; Irvine K; Behrendt H Water Sci Technol; 2005; 51(3-4):19-29. PubMed ID: 15850170 [TBL] [Abstract][Full Text] [Related]
15. Predicting the effect of livestock inputs of E. coli on microbiological compliance of bathing waters. Vinten AJ; Lewis DR; McGechan M; Duncan A; Aitken M; Hill C; Crawford C Water Res; 2004; 38(14-15):3215-24. PubMed ID: 15276737 [TBL] [Abstract][Full Text] [Related]
16. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis. Chapman PJ; Clark JM; Reynolds B; Adamson JK Environ Pollut; 2008 Jan; 151(1):110-20. PubMed ID: 17478019 [TBL] [Abstract][Full Text] [Related]
17. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Johnston CA; Shmagin BA; Frost PC; Cherrier C; Larson JH; Lamberti GA; Bridgham SD Sci Total Environ; 2008 Oct; 404(2-3):326-34. PubMed ID: 18054999 [TBL] [Abstract][Full Text] [Related]
18. A distributed non-point source pollution model: calibration and validation in the Yellow River Basin. Hao FH; Zhang XS; Yang ZF J Environ Sci (China); 2004; 16(4):646-50. PubMed ID: 15495973 [TBL] [Abstract][Full Text] [Related]
19. Predicting pesticide concentrations in river water with a hydrologically calibrated basin-scale runoff model. Matsui Y; Itoshiro S; Buma M; Matsushita T; Hosogoe K; Yuasa A; Shinoda S; Inoue T Water Sci Technol; 2002; 45(9):141-8. PubMed ID: 12079096 [TBL] [Abstract][Full Text] [Related]
20. Subannual models for catchment management: evaluating model performance on three European catchments. Silgram M; Schoumans OF; Walvoort DJ; Anthony SG; Groenendijk P; Stromqvist J; Bouraoui F; Arheimer B; Kapetanaki M; Lo Porto A; MÃ¥rtensson K J Environ Monit; 2009 Mar; 11(3):526-39. PubMed ID: 19280032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]