These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16406679)

  • 1. A biological approach to computational models of proteomic networks.
    Janes KA; Lauffenburger DA
    Curr Opin Chem Biol; 2006 Feb; 10(1):73-80. PubMed ID: 16406679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and estimation of dynamic EGFR pathway by data assimilation approach using time series proteomic data.
    Tasaki S; Nagasaki M; Oyama M; Hata H; Ueno K; Yoshida R; Higuchi T; Sugano S; Miyano S
    Genome Inform; 2006; 17(2):226-38. PubMed ID: 17503395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lock-and-key model for protein-protein interactions.
    Morrison JL; Breitling R; Higham DJ; Gilbert DR
    Bioinformatics; 2006 Aug; 22(16):2012-9. PubMed ID: 16787977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.
    Saez-Rodriguez J; Gayer S; Ginkel M; Gilles ED
    Bioinformatics; 2008 Aug; 24(16):i213-9. PubMed ID: 18689828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs.
    Nacher JC; Hayashida M; Akutsu T
    Biosystems; 2009 Feb; 95(2):155-9. PubMed ID: 19010382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of protein signaling networks in clinical proteomics.
    Geho DH; Petricoin EF; Liotta LA; Araujo RP
    Cold Spring Harb Symp Quant Biol; 2005; 70():517-24. PubMed ID: 16869790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informatics for peptide retention properties in proteomic LC-MS.
    Shinoda K; Sugimoto M; Tomita M; Ishihama Y
    Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards computing with proteins.
    Unger R; Moult J
    Proteins; 2006 Apr; 63(1):53-64. PubMed ID: 16435369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of uses of network and graph theory concepts within proteomics.
    Grindrod P; Kibble M
    Expert Rev Proteomics; 2004 Aug; 1(2):229-38. PubMed ID: 15966817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOVE: a multi-level ontology-based visualization and exploration framework for genomic networks.
    Bosman DW; Blom EJ; Ogao PJ; Kuipers OP; Roerdink JB
    In Silico Biol; 2007; 7(1):35-59. PubMed ID: 17688427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for dealing with incomplete information in the modeling of molecular interaction networks.
    de Jong H; Ropers D
    Brief Bioinform; 2006 Dec; 7(4):354-63. PubMed ID: 17003073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representing, storing and accessing molecular interaction data: a review of models and tools.
    Strömbäck L; Jakoniene V; Tan H; Lambrix P
    Brief Bioinform; 2006 Dec; 7(4):331-8. PubMed ID: 17132622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid modeling in computational neuropsychiatry.
    Marin-Sanguino A; Mendoza ER
    Pharmacopsychiatry; 2008 Sep; 41 Suppl 1():S85-8. PubMed ID: 18756425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining, modeling, and evaluation of subnetworks from large biomolecular networks and its comparison study.
    Hu X; Ng M; Wu FX; Sokhansanj BA
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):184-94. PubMed ID: 19272861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in public proteomic MS repositories and pipelines.
    Mead JA; Bianco L; Bessant C
    Proteomics; 2009 Feb; 9(4):861-81. PubMed ID: 19212957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the fitness of plant morphologies across three levels of complexity.
    Watson J; Hanan J; Wiles J
    Biosystems; 2008; 94(1-2):182-90. PubMed ID: 18611429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional genomics and proteomics of the cellular osmotic stress response in 'non-model' organisms.
    Kültz D; Fiol D; Valkova N; Gomez-Jimenez S; Chan SY; Lee J
    J Exp Biol; 2007 May; 210(Pt 9):1593-601. PubMed ID: 17449824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.