These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16407202)

  • 1. Equilibrium between metarhodopsin-I and metarhodopsin-II is dependent on the conformation of the third cytoplasmic loop.
    Piscitelli CL; Angel TE; Bailey BW; Hargrave P; Dratz EA; Lawrence CM
    J Biol Chem; 2006 Mar; 281(10):6813-25. PubMed ID: 16407202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints.
    Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA
    Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational Differences among Metarhodopsin I, Metarhodopsin II, and Opsin Probed by Wide-Angle X-ray Scattering.
    Imamoto Y; Kojima K; Oka T; Maeda R; Shichida Y
    J Phys Chem B; 2019 Oct; 123(43):9134-9142. PubMed ID: 31580080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE; Kraft PC; Dratz EA
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
    Crocker E; Eilers M; Ahuja S; Hornak V; Hirshfeld A; Sheves M; Smith SO
    J Mol Biol; 2006 Mar; 357(1):163-72. PubMed ID: 16414074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface charge changes upon formation of the signaling state in visual rhodopsin.
    Möller M; Alexiev U
    Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of rhodopsin and the metarhodopsin I photointermediate.
    Schertler GF
    Curr Opin Struct Biol; 2005 Aug; 15(4):408-15. PubMed ID: 16043340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron crystallography reveals the structure of metarhodopsin I.
    Ruprecht JJ; Mielke T; Vogel R; Villa C; Schertler GF
    EMBO J; 2004 Sep; 23(18):3609-20. PubMed ID: 15329674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II.
    Yan EC; Kazmi MA; De S; Chang BS; Seibert C; Marin EP; Mathies RA; Sakmar TP
    Biochemistry; 2002 Mar; 41(11):3620-7. PubMed ID: 11888278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suramin affects coupling of rhodopsin to transducin.
    Lehmann N; Krishna Aradhyam G; Fahmy K
    Biophys J; 2002 Feb; 82(2):793-802. PubMed ID: 11806921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precision vs flexibility in GPCR signaling.
    Elgeti M; Rose AS; Bartl FJ; Hildebrand PW; Hofmann KP; Heck M
    J Am Chem Soc; 2013 Aug; 135(33):12305-12. PubMed ID: 23883288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.