These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 16407222)
1. Isolated regulatory domains of cGMP-dependent protein kinase Ialpha and Ibeta retain dimerization and native cGMP-binding properties and undergo isoform-specific conformational changes. Richie-Jannetta R; Busch JL; Higgins KA; Corbin JD; Francis SH J Biol Chem; 2006 Mar; 281(11):6977-84. PubMed ID: 16407222 [TBL] [Abstract][Full Text] [Related]
2. Dimerization of cGMP-dependent protein kinase Ibeta is mediated by an extensive amino-terminal leucine zipper motif, and dimerization modulates enzyme function. Richie-Jannetta R; Francis SH; Corbin JD J Biol Chem; 2003 Dec; 278(50):50070-9. PubMed ID: 12933804 [TBL] [Abstract][Full Text] [Related]
3. The catalytic domain of the cGMP-dependent protein kinase Ialpha modulates the cGMP-binding characteristics of its regulatory domain. Dostmann WR; Koep N; Endres R FEBS Lett; 1996 Dec; 398(2-3):206-10. PubMed ID: 8977108 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms associated with cGMP binding and activation of cGMP-dependent protein kinase. Wall ME; Francis SH; Corbin JD; Grimes K; Richie-Jannetta R; Kotera J; Macdonald BA; Gibson RR; Trewhella J Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2380-5. PubMed ID: 12591946 [TBL] [Abstract][Full Text] [Related]
5. Activation by cyclic GMP binding causes an apparent conformational change in cGMP-dependent protein kinase. Chu DM; Corbin JD; Grimes KA; Francis SH J Biol Chem; 1997 Dec; 272(50):31922-8. PubMed ID: 9395541 [TBL] [Abstract][Full Text] [Related]
6. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. Alverdi V; Mazon H; Versluis C; Hemrika W; Esposito G; van den Heuvel R; Scholten A; Heck AJ J Mol Biol; 2008 Feb; 375(5):1380-93. PubMed ID: 18082764 [TBL] [Abstract][Full Text] [Related]
7. cGMP-dependent protein kinase protects cGMP from hydrolysis by phosphodiesterase-5. Kotera J; Grimes KA; Corbin JD; Francis SH Biochem J; 2003 Jun; 372(Pt 2):419-26. PubMed ID: 12617722 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. Francis SH; Bessay EP; Kotera J; Grimes KA; Liu L; Thompson WJ; Corbin JD J Biol Chem; 2002 Dec; 277(49):47581-7. PubMed ID: 12359732 [TBL] [Abstract][Full Text] [Related]
9. The role of a parasite-specific allosteric site in the distinctive activation behavior of Eimeria tenella cGMP-dependent protein kinase. Salowe SP; Wiltsie J; Liberator PA; Donald RG Biochemistry; 2002 Apr; 41(13):4385-91. PubMed ID: 11914085 [TBL] [Abstract][Full Text] [Related]
10. The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. Gamm DM; Francis SH; Angelotti TP; Corbin JD; Uhler MD J Biol Chem; 1995 Nov; 270(45):27380-8. PubMed ID: 7593002 [TBL] [Abstract][Full Text] [Related]
11. The activity of cGMP-dependent protein kinase Iα is not directly regulated by oxidation-induced disulfide formation at cysteine 43. Kalyanaraman H; Zhuang S; Pilz RB; Casteel DE J Biol Chem; 2017 May; 292(20):8262-8268. PubMed ID: 28360102 [TBL] [Abstract][Full Text] [Related]
12. A conserved serine juxtaposed to the pseudosubstrate site of type I cGMP-dependent protein kinase contributes strongly to autoinhibition and lower cGMP affinity. Busch JL; Bessay EP; Francis SH; Corbin JD J Biol Chem; 2002 Sep; 277(37):34048-54. PubMed ID: 12080049 [TBL] [Abstract][Full Text] [Related]
13. Identification of the amino acid sequences responsible for high affinity activation of cGMP kinase Ialpha. Ruth P; Pfeifer A; Kamm S; Klatt P; Dostmann WR; Hofmann F J Biol Chem; 1997 Apr; 272(16):10522-8. PubMed ID: 9099696 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. Zoraghi R; Bessay EP; Corbin JD; Francis SH J Biol Chem; 2005 Mar; 280(12):12051-63. PubMed ID: 15677448 [TBL] [Abstract][Full Text] [Related]
15. Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. Kim JJ; Casteel DE; Huang G; Kwon TH; Ren RK; Zwart P; Headd JJ; Brown NG; Chow DC; Palzkill T; Kim C PLoS One; 2011 Apr; 6(4):e18413. PubMed ID: 21526164 [TBL] [Abstract][Full Text] [Related]
17. Fast and slow cyclic nucleotide-dissociation sites in cAMP-dependent protein kinase are transposed in type Ibeta cGMP-dependent protein kinase. Reed RB; Sandberg M; Jahnsen T; Lohmann SM; Francis SH; Corbin JD J Biol Chem; 1996 Jul; 271(29):17570-5. PubMed ID: 8663415 [TBL] [Abstract][Full Text] [Related]
18. Activation by autophosphorylation or cGMP binding produces a similar apparent conformational change in cGMP-dependent protein kinase. Chu DM; Francis SH; Thomas JW; Maksymovitch EA; Fosler M; Corbin JD J Biol Chem; 1998 Jun; 273(23):14649-56. PubMed ID: 9603983 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I. Huang GY; Kim JJ; Reger AS; Lorenz R; Moon EW; Zhao C; Casteel DE; Bertinetti D; Vanschouwen B; Selvaratnam R; Pflugrath JW; Sankaran B; Melacini G; Herberg FW; Kim C Structure; 2014 Jan; 22(1):116-24. PubMed ID: 24239458 [TBL] [Abstract][Full Text] [Related]