BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16407261)

  • 41. SUMO-1 modification of human cytomegalovirus IE1/IE72.
    Spengler ML; Kurapatwinski K; Black AR; Azizkhan-Clifford J
    J Virol; 2002 Mar; 76(6):2990-6. PubMed ID: 11861864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity.
    Kang J; Gocke CB; Yu H
    BMC Biochem; 2006 Feb; 7():5. PubMed ID: 16478538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.
    Priyanka ; Kotiya D; Rana M; Subbarao N; Puri N; Tyagi RK
    Mol Cell Endocrinol; 2016 Jan; 420():194-207. PubMed ID: 26549688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distinct functional modes of SUMOylation for retinoid X receptor alpha.
    Lee WP; Jena S; Rodriguez EP; O'Donovan SP; Wagner C; Jurutka PW; Thompson PD
    Biochem Biophys Res Commun; 2015 Aug; 464(1):195-200. PubMed ID: 26116533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The ND10 Component Promyelocytic Leukemia Protein Acts as an E3 Ligase for SUMOylation of the Major Immediate Early Protein IE1 of Human Cytomegalovirus.
    Reuter N; Schilling EM; Scherer M; Müller R; Stamminger T
    J Virol; 2017 May; 91(10):. PubMed ID: 28250117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription.
    Chhunchha B; Fatma N; Kubo E; Singh DP
    FEBS J; 2014 Aug; 281(15):3357-81. PubMed ID: 24910119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decreased recognition of SUMO-sensitive target genes following modification of SF-1 (NR5A1).
    Campbell LA; Faivre EJ; Show MD; Ingraham JG; Flinders J; Gross JD; Ingraham HA
    Mol Cell Biol; 2008 Dec; 28(24):7476-86. PubMed ID: 18838537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1.
    Kang ES; Park CW; Chung JH
    Biochem Biophys Res Commun; 2001 Dec; 289(4):862-8. PubMed ID: 11735126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression.
    Xu Y; Ahn JH; Cheng M; apRhys CM; Chiou CJ; Zong J; Matunis MJ; Hayward GS
    J Virol; 2001 Nov; 75(22):10683-95. PubMed ID: 11602710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway.
    Hirano Y; Murata S; Tanaka K; Shimizu M; Sato R
    J Biol Chem; 2003 May; 278(19):16809-19. PubMed ID: 12615929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An extended consensus motif enhances the specificity of substrate modification by SUMO.
    Yang SH; Galanis A; Witty J; Sharrocks AD
    EMBO J; 2006 Nov; 25(21):5083-93. PubMed ID: 17036045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sumoylation increases HIF-1alpha stability and its transcriptional activity.
    Bae SH; Jeong JW; Park JA; Kim SH; Bae MK; Choi SJ; Kim KW
    Biochem Biophys Res Commun; 2004 Nov; 324(1):394-400. PubMed ID: 15465032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1.
    Chauchereau A; Amazit L; Quesne M; Guiochon-Mantel A; Milgrom E
    J Biol Chem; 2003 Apr; 278(14):12335-43. PubMed ID: 12529333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.
    Suzuki T; Muto S; Miyamoto S; Aizawa K; Horikoshi M; Nagai R
    J Biol Chem; 2003 Aug; 278(31):28758-64. PubMed ID: 12759364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective SUMO modification of cAMP-specific phosphodiesterase-4D5 (PDE4D5) regulates the functional consequences of phosphorylation by PKA and ERK.
    Li X; Vadrevu S; Dunlop A; Day J; Advant N; Troeger J; Klussmann E; Jaffrey E; Hay RT; Adams DR; Houslay MD; Baillie GS
    Biochem J; 2010 Apr; 428(1):55-65. PubMed ID: 20196770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation.
    Floyd ZE; Stephens JM
    Obes Res; 2004 Jun; 12(6):921-8. PubMed ID: 15229330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ZNF451 is a novel PML body- and SUMO-associated transcriptional coregulator.
    Karvonen U; Jääskeläinen T; Rytinki M; Kaikkonen S; Palvimo JJ
    J Mol Biol; 2008 Oct; 382(3):585-600. PubMed ID: 18656483
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity.
    Hamard PJ; Boyer-Guittaut M; Camuzeaux B; Dujardin D; Hauss C; Oelgeschläger T; Vigneron M; Kedinger C; Chatton B
    Nucleic Acids Res; 2007; 35(4):1134-44. PubMed ID: 17264123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repression of Smad4 transcriptional activity by SUMO modification.
    Long J; Wang G; He D; Liu F
    Biochem J; 2004 Apr; 379(Pt 1):23-9. PubMed ID: 14750902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.