BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

951 related articles for article (PubMed ID: 16407422)

  • 1. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA; Gorassini MA
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion.
    Hansen NL; Conway BA; Halliday DM; Hansen S; Pyndt HS; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2005 Aug; 94(2):934-42. PubMed ID: 15800077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans.
    Kamibayashi K; Nakajima T; Takahashi M; Akai M; Nakazawa K
    Eur J Neurosci; 2009 Jul; 30(1):100-9. PubMed ID: 19523098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N; Broton JG; Suys S; Calancie B
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D; Willerslev-Olsen M; Lundell H; Conway BA; Knudsen H; Biering-Sørensen F; Nielsen JB
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH; Harkema S; Requejo P; Edgerton VR
    J Neurol Rehabil; 1995; 9(4):183-90. PubMed ID: 11539274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal cortex-muscle interactions in subjects with X-linked Kallmann's syndrome and mirror movements.
    Farmer SF; Harrison LM; Mayston MJ; Parekh A; James LM; Stephens JA
    Brain; 2004 Feb; 127(Pt 2):385-97. PubMed ID: 14662517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
    Roy FD; Norton JA; Gorassini MA
    J Neurophysiol; 2007 Aug; 98(2):657-67. PubMed ID: 17537908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
    Dietz V; Grillner S; Trepp A; Hubli M; Bolliger M
    Brain; 2009 Aug; 132(Pt 8):2196-205. PubMed ID: 19460795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal contributions to lower limb muscle activity during cycling in humans.
    Sidhu SK; Hoffman BW; Cresswell AG; Carroll TJ
    J Neurophysiol; 2012 Jan; 107(1):306-14. PubMed ID: 22013236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans.
    Hansen NL; Nielsen JB
    J Physiol; 2004 Nov; 561(Pt 1):295-306. PubMed ID: 15358809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-interval intracortical inhibition with incomplete spinal cord injury.
    Roy FD; Zewdie ET; Gorassini MA
    Clin Neurophysiol; 2011 Jul; 122(7):1387-95. PubMed ID: 21295518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.