BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16407445)

  • 1. Evidence for involvement of photosynthetic processes in the stomatal response to CO2.
    Messinger SM; Buckley TN; Mott KA
    Plant Physiol; 2006 Feb; 140(2):771-8. PubMed ID: 16407445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthesis-dependent/independent control of stomatal responses to CO2 in mutant barley with surplus electron transport capacity and reduced SLAH3 anion channel transcript.
    Córdoba J; Molina-Cano JL; Pérez P; Morcuende R; Moralejo M; Savé R; Martínez-Carrasco R
    Plant Sci; 2015 Oct; 239():15-25. PubMed ID: 26398787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity.
    Lawson T; Oxborough K; Morison JI; Baker NR
    Plant Physiol; 2002 Jan; 128(1):52-62. PubMed ID: 11788752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells.
    Doi M; Shimazaki K
    Plant Physiol; 2008 Jun; 147(2):922-30. PubMed ID: 18467462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of guard cell- or mesophyll cell-localized phytochromes in stomatal responses to blue, red, and far-red light.
    Weraduwage SM; Frame MK; Sharkey TD
    Planta; 2022 Aug; 256(3):55. PubMed ID: 35932433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought.
    Cornic G; Fresneau C
    Ann Bot; 2002 Jun; 89 Spec No(7):887-94. PubMed ID: 12102514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis.
    Suetsugu N; Takami T; Ebisu Y; Watanabe H; Iiboshi C; Doi M; Shimazaki K
    PLoS One; 2014; 9(9):e108374. PubMed ID: 25250952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.
    Ethier GJ; Livingston NJ; Harrison DL; Black TA; Moran JA
    Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply.
    Lin ZH; Chen LS; Chen RB; Zhang FZ; Jiang HX; Tang N
    BMC Plant Biol; 2009 Apr; 9():43. PubMed ID: 19379526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential sensitivities of photosynthetic processes and carbon loss mechanisms govern N-induced variation in net carbon assimilation rate for field-grown cotton.
    Parkash V; Snider JL; Sintim HY; Hand LC; Virk G; Pokhrel A
    J Exp Bot; 2023 Apr; 74(8):2638-2652. PubMed ID: 36715336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic Linear Electron Flow Drives CO
    Shimakawa G; Miyake C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP.
    Lawlor DW
    Ann Bot; 2002 Jun; 89 Spec No(7):871-85. PubMed ID: 12102513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of red and blue light on leaf anatomy, CO
    Li Y; Xin G; Liu C; Shi Q; Yang F; Wei M
    BMC Plant Biol; 2020 Jul; 20(1):318. PubMed ID: 32631228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants.
    Scafaro AP; Posch BC; Evans JR; Farquhar GD; Atkin OK
    Nat Commun; 2023 May; 14(1):2820. PubMed ID: 37198175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.
    Kaiser E; Kromdijk J; Harbinson J; Heuvelink E; Marcelis LF
    Ann Bot; 2017 Jan; 119(1):191-205. PubMed ID: 28025286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.