These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 16407557)
1. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. Hawkes C; Jhamandas JH; Harris KH; Fu W; MacDonald RG; Kar S J Neurosci; 2006 Jan; 26(2):585-96. PubMed ID: 16407557 [TBL] [Abstract][Full Text] [Related]
2. Leu27 insulin-like growth factor-II, an insulin-like growth factor-II analog, attenuates depolarization-evoked GABA release from adult rat hippocampal and cortical slices. Amritraj A; Rauw G; Baker GB; Kar S Neuroscience; 2010 Oct; 170(3):722-30. PubMed ID: 20659530 [TBL] [Abstract][Full Text] [Related]
3. Single-transmembrane domain IGF-II/M6P receptor: potential interaction with G protein and its association with cholesterol-rich membrane domains. Amritraj A; Posse de Chaves EI; Hawkes C; Macdonald RG; Kar S Endocrinology; 2012 Oct; 153(10):4784-98. PubMed ID: 22903618 [TBL] [Abstract][Full Text] [Related]
4. IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells. Chu CH; Tzang BS; Chen LM; Kuo CH; Cheng YC; Chen LY; Tsai FJ; Tsai CH; Kuo WW; Huang CY J Endocrinol; 2008 May; 197(2):381-90. PubMed ID: 18434368 [TBL] [Abstract][Full Text] [Related]
5. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. Körner C; Nürnberg B; Uhde M; Braulke T J Biol Chem; 1995 Jan; 270(1):287-95. PubMed ID: 7814388 [TBL] [Abstract][Full Text] [Related]
6. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP. Mei YA; Vaudry D; Basille M; Castel H; Fournier A; Vaudry H; Gonzalez BJ Eur J Neurosci; 2004 Mar; 19(6):1446-58. PubMed ID: 15066141 [TBL] [Abstract][Full Text] [Related]
7. Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. Hawkes C; Kar S J Comp Neurol; 2003 Mar; 458(2):113-27. PubMed ID: 12596253 [TBL] [Abstract][Full Text] [Related]
8. Insulin-like growth factors-I and -II differentially regulate endogenous acetylcholine release from the rat hippocampal formation. Kar S; Seto D; Doré S; Hanisch U; Quirion R Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14054-9. PubMed ID: 9391151 [TBL] [Abstract][Full Text] [Related]
9. An interaction between inositol hexakisphosphate (IP6) and insulin-like growth factor II receptor binding sites in the rat brain. Kar S; Quirion R; Parent A Neuroreport; 1994 Jan; 5(5):625-8. PubMed ID: 8025258 [TBL] [Abstract][Full Text] [Related]
10. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Hawkes C; Kar S Brain Res Brain Res Rev; 2004 Mar; 44(2-3):117-40. PubMed ID: 15003389 [TBL] [Abstract][Full Text] [Related]
11. Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels. Zhang Y; Qin W; Qian Z; Liu X; Wang H; Gong S; Sun YG; Snutch TP; Jiang X; Tao J Sci Signal; 2014 Oct; 7(346):ra94. PubMed ID: 25292213 [TBL] [Abstract][Full Text] [Related]
12. Human osteosarcoma (U-2 OS) cells express both insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptors and synthesize IGF-II: autocrine growth stimulation by IGF-II via the IGF-I receptor. Raile K; Höflich A; Kessler U; Yang Y; Pfuender M; Blum WF; Kolb H; Schwarz HP; Kiess W J Cell Physiol; 1994 Jun; 159(3):531-41. PubMed ID: 8188767 [TBL] [Abstract][Full Text] [Related]
13. Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. Poiraudeau S; Lieberherr M; Kergosie N; Corvol MT J Cell Biochem; 1997 Mar; 64(3):414-22. PubMed ID: 9057099 [TBL] [Abstract][Full Text] [Related]
14. Diverse signal transduction pathways mediated by endogenous P2 receptors in cultured rat cerebral cortical neurons. Nishizaki T; Mori M J Neurophysiol; 1998 May; 79(5):2513-21. PubMed ID: 9582224 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of chondrocyte cathepsin B and L activities by insulin-like growth factor-II (IGF-II) and its Ser29 variant in vitro: possible role of the mannose 6-phosphate/IGF-II receptor. De Ceuninck F; Poiraudeau S; Pagano M; Tsagris L; Blanchard O; Willeput J; Corvol M Mol Cell Endocrinol; 1995 Sep; 113(2):205-13. PubMed ID: 8674828 [TBL] [Abstract][Full Text] [Related]
16. Distinctive regulation of the functional linkage between the human cation-independent mannose 6-phosphate receptor and GTP-binding proteins by insulin-like growth factor II and mannose 6-phosphate. Murayama Y; Okamoto T; Ogata E; Asano T; Iiri T; Katada T; Ui M; Grubb JH; Sly WS; Nishimoto I J Biol Chem; 1990 Oct; 265(29):17456-62. PubMed ID: 2170379 [TBL] [Abstract][Full Text] [Related]
17. Cellular distribution of insulin-like growth factor-II/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology. Kar S; Poirier J; Guevara J; Dea D; Hawkes C; Robitaille Y; Quirion R Neurobiol Aging; 2006 Feb; 27(2):199-210. PubMed ID: 16399207 [TBL] [Abstract][Full Text] [Related]
18. Possible direct linkage of insulin-like growth factor-II receptor with guanine nucleotide-binding proteins. Nishimoto I; Murayama Y; Katada T; Ui M; Ogata E J Biol Chem; 1989 Aug; 264(24):14029-38. PubMed ID: 2547780 [TBL] [Abstract][Full Text] [Related]
19. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1. Carrasco L; Cea P; Rocco P; Peña-Oyarzún D; Rivera-Mejias P; Sotomayor-Flores C; Quiroga C; Criollo A; Ibarra C; Chiong M; Lavandero S J Cell Biochem; 2014 Apr; 115(4):712-20. PubMed ID: 24243530 [TBL] [Abstract][Full Text] [Related]
20. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Hawkes C; Amritraj A; Macdonald RG; Jhamandas JH; Kar S Mol Neurobiol; 2007 Jun; 35(3):329-45. PubMed ID: 17917122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]