BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 16407990)

  • 1. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.
    Ferreras JA; Ryu JS; Di Lello F; Tan DS; Quadri LE
    Nat Chem Biol; 2005 Jun; 1(1):29-32. PubMed ID: 16407990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis.
    Stirrett KL; Ferreras JA; Jayaprakash V; Sinha BN; Ren T; Quadri LE
    Bioorg Med Chem Lett; 2008 Apr; 18(8):2662-8. PubMed ID: 18394884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis.
    Miethke M; Bisseret P; Beckering CL; Vignard D; Eustache J; Marahiel MA
    FEBS J; 2006 Jan; 273(2):409-19. PubMed ID: 16403027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis.
    Rodriguez GM; Gardner R; Kaur N; Phanstiel O
    Biometals; 2008 Feb; 21(1):93-103. PubMed ID: 17401548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis.
    Patel K; Butala S; Khan T; Suvarna V; Sherje A; Dravyakar B
    Eur J Med Chem; 2018 Sep; 157():783-790. PubMed ID: 30142615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of anti-tuberculosis drugs on the iron-sequestration mechanisms of mycobacteria.
    Raghu B; Sarma GR; Venkatesan P
    Indian J Pathol Microbiol; 1995 Jul; 38(3):287-92. PubMed ID: 8819661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical scaffolds with structural similarities to siderophores of nonribosomal peptide-polyketide origin as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis.
    Ferreras JA; Gupta A; Amin ND; Basu A; Sinha BN; Worgall S; Jayaprakash V; Quadri LE
    Bioorg Med Chem Lett; 2011 Nov; 21(21):6533-7. PubMed ID: 21940166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of iron on the growth and siderophore production of mycobacteria.
    Raghu B; Sarma GR; Venkatesan P
    Biochem Mol Biol Int; 1993 Oct; 31(2):341-8. PubMed ID: 8275022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Activity Relationships of the MEPicides: N-Acyl and O-Linked Analogs of FR900098 as Inhibitors of Dxr from Mycobacterium tuberculosis and Yersinia pestis.
    San Jose G; Jackson ER; Haymond A; Johny C; Edwards RL; Wang X; Brothers RC; Edelstein EK; Odom AR; Boshoff HI; Couch RD; Dowd CS
    ACS Infect Dis; 2016 Dec; 2(12):923-935. PubMed ID: 27676224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Iron assimilation by Yersinia pestis on iron-deficient media].
    Rublev BD; Kagramanov VS; Bursha OS; Ryzhkov VIu
    Mikrobiol Zh (1978); 1989; 51(1):13-8. PubMed ID: 2524638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting iron acquisition by Mycobacterium tuberculosis.
    Monfeli RR; Beeson C
    Infect Disord Drug Targets; 2007 Sep; 7(3):213-20. PubMed ID: 17897057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis.
    Krajczyk A; Zeidler J; Januszczyk P; Dawadi S; Boshoff HI; Barry CE; Ostrowski T; Aldrich CC
    Bioorg Med Chem; 2016 Jul; 24(14):3133-43. PubMed ID: 27265685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.
    Gehring AM; DeMoll E; Fetherston JD; Mori I; Mayhew GF; Blattner FR; Walsh CT; Perry RD
    Chem Biol; 1998 Oct; 5(10):573-86. PubMed ID: 9818149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of novel iron compounds as potential therapeutic agents against tuberculosis.
    Tarallo MB; Urquiola C; Monge A; Costa BP; Ribeiro RR; Costa-Filho AJ; Mercader RC; Pavan FR; Leite CQ; Torre MH; Gambino D
    J Inorg Biochem; 2010 Nov; 104(11):1164-70. PubMed ID: 20701975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors.
    Dharmaraja AT; Alvala M; Sriram D; Yogeeswari P; Chakrapani H
    Chem Commun (Camb); 2012 Oct; 48(83):10325-7. PubMed ID: 22977884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy.
    Möllmann U; Heinisch L; Bauernfeind A; Köhler T; Ankel-Fuchs D
    Biometals; 2009 Aug; 22(4):615-24. PubMed ID: 19214755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of iron metabolism in Mycobacterium tuberculosis.
    Rodriguez GM
    Trends Microbiol; 2006 Jul; 14(7):320-7. PubMed ID: 16759864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide conjugates of therapeutically used antitubercular isoniazid-design, synthesis and antimycobacterial effect.
    Horváti K; Mezo G; Szabó N; Hudecz F; Bosze S
    J Pept Sci; 2009 May; 15(5):385-91. PubMed ID: 19319854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis.
    Somu RV; Boshoff H; Qiao C; Bennett EM; Barry CE; Aldrich CC
    J Med Chem; 2006 Jan; 49(1):31-4. PubMed ID: 16392788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.