These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16407994)

  • 61. Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase.
    Wales JA; Chen CY; Breci L; Weichsel A; Bernier SG; Sheppeck JE; Solinga R; Nakai T; Renhowe PA; Jung J; Montfort WR
    J Biol Chem; 2018 Feb; 293(5):1850-1864. PubMed ID: 29222330
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Important roles of Tyr43 at the putative heme distal side in the oxygen recognition and stability of the Fe(II)-O2 complex of YddV, a globin-coupled heme-based oxygen sensor diguanylate cyclase.
    Kitanishi K; Kobayashi K; Kawamura Y; Ishigami I; Ogura T; Nakajima K; Igarashi J; Tanaka A; Shimizu T
    Biochemistry; 2010 Dec; 49(49):10381-93. PubMed ID: 21067162
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interaction between the 90-kDa heat shock protein and soluble guanylyl cyclase: physiological significance and mapping of the domains mediating binding.
    Papapetropoulos A; Zhou Z; Gerassimou C; Yetik G; Venema RC; Roussos C; Sessa WC; Catravas JD
    Mol Pharmacol; 2005 Oct; 68(4):1133-41. PubMed ID: 16024662
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase--(patho)physiological and pharmacotherapeutical significance].
    Severina IS
    Biomed Khim; 2007; 53(4):385-99. PubMed ID: 18035720
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1.
    Martin NI; Derbyshire ER; Marletta MA
    Bioorg Med Chem Lett; 2007 Sep; 17(17):4938-41. PubMed ID: 17587571
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxygen binding and NO scavenging properties of truncated hemoglobin, HbN, of Mycobacterium smegmatis.
    Lama A; Pawaria S; Dikshit KL
    FEBS Lett; 2006 Jul; 580(17):4031-41. PubMed ID: 16814781
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation.
    Sayed N; Baskaran P; Ma X; van den Akker F; Beuve A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12312-7. PubMed ID: 17636120
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in NO redox signaling and regulation.
    Thomas DD; Miranda KM; Colton CA; Citrin D; Espey MG; Wink DA
    Antioxid Redox Signal; 2003 Jun; 5(3):307-17. PubMed ID: 12880485
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recent advances in heme-protein sensors.
    Chan MK
    Curr Opin Chem Biol; 2001 Apr; 5(2):216-22. PubMed ID: 11282350
    [TBL] [Abstract][Full Text] [Related]  

  • 71. DFT analysis of axial and equatorial effects on heme-CO vibrational modes: applications to CooA and H-NOX heme sensor proteins.
    Xu C; Ibrahim M; Spiro TG
    Biochemistry; 2008 Feb; 47(8):2379-87. PubMed ID: 18217776
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.
    Kruglik SG; Jasaitis A; Hola K; Yamashita T; Liebl U; Martin JL; Vos MH
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7408-13. PubMed ID: 17446273
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regeneration of the ferrous heme of soluble guanylate cyclase from the nitric oxide complex: acceleration by thiols and oxyhemoglobin.
    Brandish PE; Buechler W; Marletta MA
    Biochemistry; 1998 Dec; 37(48):16898-907. PubMed ID: 9836582
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bacterial Haemoprotein Sensors of NO: H-NOX and NosP.
    Bacon B; Nisbett LM; Boon E
    Adv Microb Physiol; 2017; 70():1-36. PubMed ID: 28528645
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural insights into the molecular mechanism of H-NOX activation.
    Olea C; Herzik MA; Kuriyan J; Marletta MA
    Protein Sci; 2010 Apr; 19(4):881-7. PubMed ID: 20162612
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings.
    Gross E; Soltesz Z; Oda S; Zelmanovich V; Abergel Z; de Bono M
    J Neurosci; 2014 Dec; 34(50):16726-38. PubMed ID: 25505325
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases.
    Pellicena P; Karow DS; Boon EM; Marletta MA; Kuriyan J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12854-9. PubMed ID: 15326296
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysis of the contribution of the globin and reductase domains to the ligand-binding properties of bacterial haemoglobins.
    Farrés J; Burckhardt-Herold S; Scherrer J; Frey AD; Kallio PT
    Biochem J; 2007 Oct; 407(1):15-22. PubMed ID: 17617059
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultrafast dynamics of ligands within heme proteins.
    Vos MH
    Biochim Biophys Acta; 2008 Jan; 1777(1):15-31. PubMed ID: 17996720
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior.
    Plate L; Marletta MA
    Trends Biochem Sci; 2013 Nov; 38(11):566-75. PubMed ID: 24113192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.