These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 16408019)
1. Mycobactin-mediated iron acquisition within macrophages. Luo M; Fadeev EA; Groves JT Nat Chem Biol; 2005 Aug; 1(3):149-53. PubMed ID: 16408019 [TBL] [Abstract][Full Text] [Related]
2. Inability to detect mycobactin in mycobacteria-infected tissues suggests an alternative iron acquisition mechanism by mycobacteria in vivo. Lambrecht RS; Collins MT Microb Pathog; 1993 Mar; 14(3):229-38. PubMed ID: 8321124 [TBL] [Abstract][Full Text] [Related]
3. Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. Olakanmi O; Schlesinger LS; Britigan BE J Leukoc Biol; 2007 Jan; 81(1):195-204. PubMed ID: 17038583 [TBL] [Abstract][Full Text] [Related]
4. Iron transport into mycobacterium avium-containing phagosomes from an Nramp1(Gly169)-transfected RAW264.7 macrophage cell line. Kuhn DE; Lafuse WP; Zwilling BS J Leukoc Biol; 2001 Jan; 69(1):43-9. PubMed ID: 11200066 [TBL] [Abstract][Full Text] [Related]
5. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Siegrist MS; Unnikrishnan M; McConnell MJ; Borowsky M; Cheng TY; Siddiqi N; Fortune SM; Moody DB; Rubin EJ Proc Natl Acad Sci U S A; 2009 Nov; 106(44):18792-7. PubMed ID: 19846780 [TBL] [Abstract][Full Text] [Related]
6. Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. Cronjé L; Edmondson N; Eisenach KD; Bornman L FEMS Immunol Med Microbiol; 2005 Aug; 45(2):103-12. PubMed ID: 16051061 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and studies of catechol-containing mycobactin S and T analogs. Walz AJ; Möllmann U; Miller MJ Org Biomol Chem; 2007 May; 5(10):1621-8. PubMed ID: 17571193 [TBL] [Abstract][Full Text] [Related]
8. Control of iron metabolism in Mycobacterium tuberculosis. Rodriguez GM Trends Microbiol; 2006 Jul; 14(7):320-7. PubMed ID: 16759864 [TBL] [Abstract][Full Text] [Related]
9. Acquisition of iron bound to low molecular weight chelates by human monocyte-derived macrophages. Olakanmi O; Stokes JB; Britigan BE J Immunol; 1994 Sep; 153(6):2691-703. PubMed ID: 8077675 [TBL] [Abstract][Full Text] [Related]
10. Iron uptake processes in Mycobacterium vaccae R877R, a mycobacterium lacking mycobactin. Messenger AJ; Hall RM; Ratledge C J Gen Microbiol; 1986 Mar; 132(3):845-52. PubMed ID: 2942636 [TBL] [Abstract][Full Text] [Related]
11. Mycobactin and the competition for iron between Mycobacterium neoaurum and M. vaccae. Hall RM; Ratledge C J Gen Microbiol; 1986 Mar; 132(3):839-43. PubMed ID: 3734752 [TBL] [Abstract][Full Text] [Related]
12. Effect of anti-tuberculosis drugs on the iron-sequestration mechanisms of mycobacteria. Raghu B; Sarma GR; Venkatesan P Indian J Pathol Microbiol; 1995 Jul; 38(3):287-92. PubMed ID: 8819661 [TBL] [Abstract][Full Text] [Related]
13. Absence of mycobactin in Mycobacterium leprae; probably a microbe dependent microorganism implications. Kato L Indian J Lepr; 1985; 57(1):58-70. PubMed ID: 3897405 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Fe(III) sequestration by an analog of the cytotoxic siderophore brasilibactin A: implications for the iron transport mechanism in mycobacteria. Harrington JM; Park H; Ying Y; Hong J; Crumbliss AL Metallomics; 2011 May; 3(5):464-71. PubMed ID: 21442123 [TBL] [Abstract][Full Text] [Related]
15. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Knobloch P; Koliwer-Brandl H; Arnold FM; Hanna N; Gonda I; Adenau S; Personnic N; Barisch C; Seeger MA; Soldati T; Hilbi H Cell Microbiol; 2020 May; 22(5):e13163. PubMed ID: 31945239 [TBL] [Abstract][Full Text] [Related]
16. Effect of iron on the growth and siderophore production of mycobacteria. Raghu B; Sarma GR; Venkatesan P Biochem Mol Biol Int; 1993 Oct; 31(2):341-8. PubMed ID: 8275022 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of the iron siderophore mycobactin J in mouse macrophages: Evidence for a hypoxia response. McQueen CF; Groves JT J Inorg Biochem; 2022 Feb; 227():111669. PubMed ID: 34864292 [TBL] [Abstract][Full Text] [Related]
18. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis. Kahnert A; Seiler P; Stein M; Bandermann S; Hahnke K; Mollenkopf H; Kaufmann SH Eur J Immunol; 2006 Mar; 36(3):631-47. PubMed ID: 16479545 [TBL] [Abstract][Full Text] [Related]
19. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Ferreras JA; Ryu JS; Di Lello F; Tan DS; Quadri LE Nat Chem Biol; 2005 Jun; 1(1):29-32. PubMed ID: 16407990 [TBL] [Abstract][Full Text] [Related]
20. Identification of genes involved in the sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways. Fiss EH; Yu S; Jacobs WR Mol Microbiol; 1994 Nov; 14(3):557-69. PubMed ID: 7885234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]