BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16408109)

  • 1. New insights into mineral and skeletal regulation by active forms of vitamin D.
    Hendy GN; Hruska KA; Mathew S; Goltzman D
    Kidney Int; 2006 Jan; 69(2):218-23. PubMed ID: 16408109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferences from genetically modified mouse models on the skeletal actions of vitamin D.
    Goltzman D
    J Steroid Biochem Mol Biol; 2015 Apr; 148():219-24. PubMed ID: 25237033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis.
    Panda DK; Miao D; Bolivar I; Li J; Huo R; Hendy GN; Goltzman D
    J Biol Chem; 2004 Apr; 279(16):16754-66. PubMed ID: 14739296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of calcium and of the Vitamin D system on skeletal and calcium homeostasis: lessons from genetic models.
    Goltzman D; Miao D; Panda DK; Hendy GN
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):485-9. PubMed ID: 15225825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Hum Mol Genet; 2005 Jun; 14(11):1515-28. PubMed ID: 15843402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive anabolic roles of 1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and mandible versus long bones.
    Liu H; Guo J; Wang L; Chen N; Karaplis A; Goltzman D; Miao D
    J Endocrinol; 2009 Nov; 203(2):203-13. PubMed ID: 19713218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands.
    Jurutka PW; Bartik L; Whitfield GK; Mathern DR; Barthel TK; Gurevich M; Hsieh JC; Kaczmarska M; Haussler CA; Haussler MR
    J Bone Miner Res; 2007 Dec; 22 Suppl 2():V2-10. PubMed ID: 18290715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maternal hypervitaminosis D reduces fetal bone mass and mineral acquisition and leads to neonatal lethality.
    Lieben L; Stockmans I; Moermans K; Carmeliet G
    Bone; 2013 Nov; 57(1):123-31. PubMed ID: 23895994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functions of vitamin D in bone.
    Goltzman D
    Histochem Cell Biol; 2018 Apr; 149(4):305-312. PubMed ID: 29435763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitamin D and its receptor during late development.
    Goltzman D; Hendy GN; White JH
    Biochim Biophys Acta; 2015 Feb; 1849(2):171-80. PubMed ID: 24939836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles.
    Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D
    Endocrinology; 2006 Oct; 147(10):4801-10. PubMed ID: 16857747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D action: lessons from VDR and Cyp27b1 null mice.
    Bouillon R; Lieben L; Mathieu C; Verstuyf A; Carmeliet G
    Pediatr Endocrinol Rev; 2013 Jun; 10 Suppl 2():354-66. PubMed ID: 23858619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice.
    Xue Y; Fleet JC
    Gastroenterology; 2009 Apr; 136(4):1317-27, e1-2. PubMed ID: 19254681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Exogenous estrogen improved calcium homeostasis and skeletal mineralization in vitamin D receptor gene knockout female mice].
    Li BY; Tong J; Zhang ZL
    Sheng Li Xue Bao; 2006 Dec; 58(6):573-6. PubMed ID: 17173192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D action : Lessons learned from genetic mouse models.
    Goltzman D
    Ann N Y Acad Sci; 2010 Mar; 1192():145-52. PubMed ID: 20392230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minireview: vitamin D receptor: new assignments for an already busy receptor.
    Norman AW
    Endocrinology; 2006 Dec; 147(12):5542-8. PubMed ID: 16946007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in mineral metabolism in stage 3, 4, and 5 chronic kidney disease (not on dialysis)].
    Lorenzo Sellares V; Torregrosa V
    Nefrologia; 2008; 28 Suppl 3():67-78. PubMed ID: 19018742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extra-intestinal calcium handling contributes to normal serum calcium levels when intestinal calcium absorption is suboptimal.
    Lieben L; Verlinden L; Masuyama R; Torrekens S; Moermans K; Schoonjans L; Carmeliet P; Carmeliet G
    Bone; 2015 Dec; 81():502-512. PubMed ID: 26319498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids.
    Russell J; Bar A; Sherwood LM; Hurwitz S
    Endocrinology; 1993 Jun; 132(6):2639-44. PubMed ID: 8389284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.