These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16408435)

  • 1. [Assessment of measured respirable dust sampler penetration and the sampling convention for work environment measurement].
    Myojo T
    Sangyo Eiseigaku Zasshi; 2005 Nov; 47(6):239-45. PubMed ID: 16408435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of a static horizontal elutriator to perform according to the ISO 7708 respirable convention.
    Myojo T; Oyabu T; Kuroda K; Kadoya C; Nishi K; Tanaka I
    Ann Occup Hyg; 2007 Jun; 51(4):371-8. PubMed ID: 17456582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive personal air sampling of dust in a working environment-A pilot study.
    Shirdel M; Bergdahl IA; Andersson BM; Wingfors H; Sommar JN; Liljelind IE
    J Occup Environ Hyg; 2019 Oct; 16(10):675-684. PubMed ID: 31442106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of respirable virtual-cyclone samplers.
    Huang SH; Kuo YM; Lin CW; Chen TJ; Liu J; Gui H; Chen CC
    J Occup Environ Hyg; 2019 Dec; 16(12):785-792. PubMed ID: 31647753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of high flow rate samplers for respirable particle collection.
    Lee T; Kim SW; Chisholm WP; Slaven J; Harper M
    Ann Occup Hyg; 2010 Aug; 54(6):697-709. PubMed ID: 20660144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of measured respirable dust sampler penetration curves with sampling conventions.
    Lidén G; Kenny LC
    Ann Occup Hyg; 1991 Oct; 35(5):485-504. PubMed ID: 1746808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Miniature Respirable Sampler for In-mask Sampling: Part 1-Particle Size Selection Performance.
    Stacey P; Thorpe A; Mogridge R; Lee T; Harper M
    Ann Occup Hyg; 2016 Nov; 60(9):1072-1083. PubMed ID: 27630151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling Efficiency and Performance of Selected Thoracic Aerosol Samplers.
    Görner P; Simon X; Boivin A; Bau S
    Ann Work Expo Health; 2017 Aug; 61(7):784-796. PubMed ID: 28810686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of High Flow Rate Personal Respirable Samplers When Challenged with Mineral Aerosols of Different Particle Size Distributions.
    Stacey P; Thorpe A; Echt A
    Ann Occup Hyg; 2016 May; 60(4):479-92. PubMed ID: 26865560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory and field testing of sampling methods for inhalable and respirable dust.
    Linnainmaa M; Laitinen J; Leskinen A; Sippula O; Kalliokoski P
    J Occup Environ Hyg; 2008 Jan; 5(1):28-35. PubMed ID: 18041642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A field evaluation of a single sampler for respirable and inhalable indium and dust measurements at an indium-tin oxide manufacturing facility.
    Hawley Blackley B; Gibbs JL; Cummings KJ; Stefaniak AB; Park JY; Stanton M; Virji MA
    J Occup Environ Hyg; 2019 Jan; 16(1):66-77. PubMed ID: 30325716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.
    Sleeth DK; Balthaser SA; Collingwood S; Larson RR
    Int J Environ Res Public Health; 2016 Mar; 13(3):. PubMed ID: 26959046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of portable, real-time dust monitors sampling actively, with size-selective adaptors, and passively.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2007 Nov; 51(8):679-91. PubMed ID: 18024485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica Measurement with High Flow Rate Respirable Size Selective Samplers: A Field Study.
    Lee T; Harper M; Kashon M; Lee LA; Healy CB; Coggins MA; Susi P; O'Brien A
    Ann Occup Hyg; 2016 Apr; 60(3):334-47. PubMed ID: 26608952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respirable size-selective sampler for end-of-shift quartz measurement: Development and performance.
    Lee T; Lee L; Cauda E; Hummer J; Harper M
    J Occup Environ Hyg; 2017 May; 14(5):335-342. PubMed ID: 27792471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler.
    Madsen AM; Sharma AK
    Ann Occup Hyg; 2008 Apr; 52(3):167-76. PubMed ID: 18326871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method-induced misclassification for a respirable dust sampled using ISO/ACGIH/CEN criteria.
    Johnson DL; Esmen NA
    Ann Occup Hyg; 2004 Jan; 48(1):13-20. PubMed ID: 14718341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory comparison of new high flow rate respirable size-selective sampler.
    Lee T; Thorpe A; Cauda E; Tipton L; Sanderson WT; Echt A
    J Occup Environ Hyg; 2018 Oct; 15(10):755-765. PubMed ID: 30095363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.