These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16408435)

  • 21. Laboratory study of selected personal inhalable aerosol samplers.
    Görner P; Simon X; Wrobel R; Kauffer E; Witschger O
    Ann Occup Hyg; 2010 Mar; 54(2):165-87. PubMed ID: 20147627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calibration of high flow rate thoracic-size selective samplers.
    Lee T; Thorpe A; Cauda E; Harper M
    J Occup Environ Hyg; 2016; 13(6):D93-8. PubMed ID: 26891196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of the performance of samplers for respirable dust in workplaces and laboratory analysis for respirable quartz.
    Verpaele S; Jouret J
    Ann Occup Hyg; 2013 Jan; 57(1):54-62. PubMed ID: 22826536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exposure to dust and its particle size distribution in shoe manufacture and repair workplaces measured with GRIMM laser dust monitor.
    Stroszejn-Mrowca G; Szadkowska-Stańczyk I
    Int J Occup Med Environ Health; 2003; 16(4):321-8. PubMed ID: 14964641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction of sampler-to-sampler comparisons based on aerosol size distribution.
    O'Shaughnessy PT; Lo J; Golla V; Nakatsu J; Tillery MI; Reynolds S
    J Occup Environ Hyg; 2007 Apr; 4(4):237-45. PubMed ID: 17365494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evaluation of sharp cut cyclones for sampling diesel particulate matter aerosol in the presence of respirable dust.
    Cauda E; Sheehan M; Gussman R; Kenny L; Volkwein J
    Ann Occup Hyg; 2014 Oct; 58(8):995-1005. PubMed ID: 25060240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the UNC Passive Aerosol Sampler Model Based on Comparison with Commonly Used Aerosol Sampling Methods.
    Shirdel M; Andersson BM; Bergdahl IA; Sommar JN; Wingfors H; Liljelind IE
    Ann Work Expo Health; 2018 Mar; 62(3):328-338. PubMed ID: 29300818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of PUF foam inserts for respirable dust measurements in the brick-manufacturing industry.
    De Vocht F; Hirst A; Gardner A
    Ann Occup Hyg; 2009 Jan; 53(1):19-25. PubMed ID: 18977848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respirable quartz exposure on two medium-sized farms in southern Mozambique.
    Franque Mirembo JC; Swanepoel AJ; Rees D
    Int J Occup Environ Health; 2013; 19(2):113-8. PubMed ID: 23684269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Fractional and component composition of dust in the air of workplace at machinery enterprise].
    Maĭ IV; Zagorodnov SIu; Maks AA
    Med Tr Prom Ekol; 2012; (12):12-5. PubMed ID: 23461182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of neutralized particles on the sampling efficiency of polyurethane foam used to estimate the extrathoracic deposition fraction.
    Tomyn RL; Sleeth DK; Thiese MS; Larson RR
    J Occup Environ Hyg; 2016; 13(2):133-40. PubMed ID: 26513302
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of fifteen respirable aerosol samplers used in occupational hygiene.
    Görner P; Wrobel R; Micka V; Skoda V; Denis J; Fabriès JF
    Ann Occup Hyg; 2001 Jan; 45(1):43-54. PubMed ID: 11137698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source.
    Witschger O; Grinshpun SA; Fauvel S; Basso G
    Ann Occup Hyg; 2004 Jun; 48(4):351-68. PubMed ID: 15191944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of Multi-walled Carbon Nanotubes and Carbon Nanodiscs on Workplace Surfaces at a Small-Scale Producer.
    Hedmer M; Ludvigsson L; Isaxon C; Nilsson PT; Skaug V; Bohgard M; Pagels JH; Messing ME; Tinnerberg H
    Ann Occup Hyg; 2015 Aug; 59(7):836-52. PubMed ID: 26122528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance evaluation of disposable inhalable aerosol sampler at a copper electrorefinery.
    Lee EG; Grimson PJ; Chisholm WP; Kashon ML; He X; L'Orange C; Volckens J
    J Occup Environ Hyg; 2019 Mar; 16(3):250-257. PubMed ID: 30640589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sampling of respirable isocyanate particles.
    Gylestam D; Gustavsson M; Karlsson D; Dalene M; Skarping G
    Ann Occup Hyg; 2014 Apr; 58(3):340-54. PubMed ID: 24371044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal trends in respirable dust and respirable quartz concentrations within the European industrial minerals sector over a 15-year period (2002-2016).
    Zilaout H; Houba R; Kromhout H
    Occup Environ Med; 2020 Apr; 77(4):268-275. PubMed ID: 32034033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.
    Thorpe A; Walsh PT
    Ann Occup Hyg; 2013 Aug; 57(7):824-41. PubMed ID: 23704135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of low-cost, dual-fraction dust samplers.
    Kenny L; Chung K; Dilworth M; Hammond C; Wynn Jones J; Shreeve Z; Winton J
    Ann Occup Hyg; 2001 Jan; 45(1):35-42. PubMed ID: 11137697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Particle Concentrations in Occupational Settings Measured with a Nanoparticle Respiratory Deposition (NRD) Sampler.
    Stebounova LV; Gonzalez-Pech NI; Park JH; Anthony TR; Grassian VH; Peters TM
    Ann Work Expo Health; 2018 Jul; 62(6):699-710. PubMed ID: 29788211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.