These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 16408605)
1. Effect of water activity and temperature on production of aflatoxin and cyclopiazonic acid by Aspergillus flavus in peanuts. Vaamonde G; Patriarca A; Fernández Pinto VE Adv Exp Med Biol; 2006; 571():225-35. PubMed ID: 16408605 [No Abstract] [Full Text] [Related]
2. Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section flavi from different substrates in Argentina. Vaamonde G; Patriarca A; Fernández Pinto V; Comerio R; Degrossi C Int J Food Microbiol; 2003 Nov; 88(1):79-84. PubMed ID: 14527788 [TBL] [Abstract][Full Text] [Related]
3. Carbon dioxide production as an indicator of Aspergillus flavus colonisation and aflatoxins/cyclopiazonic acid contamination in shelled peanuts stored under different interacting abiotic factors. Garcia-Cela E; Gari Sanchez FJ; Sulyok M; Verheecke-Vaessen C; Medina A; Krska R; Magan N Fungal Biol; 2020 Jan; 124(1):1-7. PubMed ID: 31892372 [TBL] [Abstract][Full Text] [Related]
4. Studies on Aspergillus section Flavi isolated from maize in northern Italy. Giorni P; Magan N; Pietri A; Bertuzzi T; Battilani P Int J Food Microbiol; 2007 Feb; 113(3):330-8. PubMed ID: 17084935 [TBL] [Abstract][Full Text] [Related]
5. Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar. Norlia M; Jinap S; Nor-Khaizura MAR; Radu S; John JM; Rahman MAH; Peter ML; Sharif Z Int J Food Microbiol; 2020 Dec; 335():108836. PubMed ID: 33065380 [TBL] [Abstract][Full Text] [Related]
6. Sampling plans for aflatoxin analysis in peanuts and corn. Report of an FAO technical consultation. Rome. FAO Food Nutr Pap; 1993; 55():1-77. PubMed ID: 8181554 [No Abstract] [Full Text] [Related]
7. Simultaneous quantitation of Aspergillus flavus/A. parasiticus and aflatoxins in peanuts. Dorner JW J AOAC Int; 2002; 85(4):911-6. PubMed ID: 12180687 [TBL] [Abstract][Full Text] [Related]
8. Aflatoxin production in peanut varieties by Aspergillus flavus Link and Aspergillus parasiticus Speare. Nagarajan V; Bhat RV Appl Microbiol; 1973 Feb; 25(2):319-21. PubMed ID: 4632857 [TBL] [Abstract][Full Text] [Related]
9. Co-production of aflatoxins and cyclopiazonic acid in isolates of Aspergillus flavus. Gqaleni N; Smith JE; Lacey J Food Addit Contam; 1996; 13(6):677-85. PubMed ID: 8871125 [TBL] [Abstract][Full Text] [Related]
10. Growth of and aflatoxin production by Aspergillus flavus in peanuts stored under modified atmosphere packaging (MAP) conditions. Ellis WO; Smith JP; Simpson BK; Ramaswamy H; Doyon G Int J Food Microbiol; 1994 May; 22(2-3):173-87. PubMed ID: 8074970 [TBL] [Abstract][Full Text] [Related]
11. Temperature and aflatoxin production by Aspergillus flavus and A. parasiticus strains from Nigerian groundnuts. Ogundero VW J Basic Microbiol; 1987; 27(9):511-4. PubMed ID: 3136240 [TBL] [Abstract][Full Text] [Related]
12. Effects of soil moisture and temperature on preharvest invasion of peanuts by the Aspergillus flavus group and subsequent aflatoxin development. Hill RA; Blankenship PD; Cole RJ; Sanders TH Appl Environ Microbiol; 1983 Feb; 45(2):628-33. PubMed ID: 6402980 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Sánchez E; Heredia N; García S Int J Food Microbiol; 2005 Feb; 98(3):271-9. PubMed ID: 15698688 [TBL] [Abstract][Full Text] [Related]
14. Temporal monitoring of the nor-1 (aflD) gene of Aspergillus flavus in relation to aflatoxin B₁ production during storage of peanuts under different water activity levels. Abdel-Hadi A; Carter D; Magan N J Appl Microbiol; 2010 Dec; 109(6):1914-22. PubMed ID: 20735510 [TBL] [Abstract][Full Text] [Related]
15. Aflatoxin contamination of groundnuts in Sudan. Haq Elamin NH; Abdel-Rahim AM; Khalid AE Mycopathologia; 1988 Oct; 104(1):25-31. PubMed ID: 3146026 [TBL] [Abstract][Full Text] [Related]
16. Effect of geocarposphere temperature on pre-harvest colonization of drought-stressed peanuts by Aspergillus flavus and subsequent aflatoxin contamination. Blankenship PD; Cole RJ; Sanders TH; Hill RA Mycopathologia; 1984 Mar; 85(1-2):69-74. PubMed ID: 6427616 [TBL] [Abstract][Full Text] [Related]
17. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Pildain MB; Vaamonde G; Cabral D Int J Food Microbiol; 2004 May; 93(1):31-40. PubMed ID: 15135580 [TBL] [Abstract][Full Text] [Related]
18. Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Pitt JI; Hocking AD Mycopathologia; 2006 Sep; 162(3):233-43. PubMed ID: 16944290 [TBL] [Abstract][Full Text] [Related]
19. Mean geocarposphere temperatures that induce preharvest aflatoxin contamination of peanuts under drought stress. Cole RJ; Sanders TH; Hill RA; Blankenship PD Mycopathologia; 1985 Jul; 91(1):41-6. PubMed ID: 3930968 [TBL] [Abstract][Full Text] [Related]
20. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of aspergillus flavus along a transect within the United States. Horn BW; Dorner JW Appl Environ Microbiol; 1999 Apr; 65(4):1444-9. PubMed ID: 10103234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]